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Abstract 
 

In the modern architectures, if we want to 

increase the processor performance, we need to 

increase the ILP. TLP has been complemented to ILP 

in multithreaded architectures. In this paper, we 

present an evaluation of modern processor that 

decouples memory accesses to alleviate the gap, uses 

a non-blocking multithreaded together with the 

dataflow paradigm. We provide both clock cycles per 

instruction (CPI) and instructions per clock cycle 

(IPC) evaluation of a multithreaded architecture by 

using speculative execution. The existing architecture 

has been evaluated previously and shown that it has 

outperformed MIPS like architectures. In this 

particular study, we try to implement speculative 

execution of multithread on this unique architecture. 

Some of the benchmarks we used include I-structure 

that is unique to dataflow architecture and other 

benchmarks are without I-structure. All the 

benchmarks have shown speedup of about 1.3. In a 

speculative execution, it divides the thread 

aggressively and the mutual exclusion and 

dependence are guaranteed to be parallel. Thus it can 

increase the performance of any program with high 

probability. We have used different architectural 

simulators to prove the existing performance 

improvement of speculative execution. 

 

1. Introduction 
 

In the past decade, microprocessors have been 

improving their performance at a rate of 50-60% per 

year. It was mainly due to increase in clock rates and 

improvement in compiler technology and 

improvement in instruction throughput (IPC). 

Achieving this performance improvement in the future 

would be a tremendous challenge, since it is already 

facing technology-driven limitations. The researchers 

may not be able to sustain clock speed improvements 

with all the existing technologies on a single core. 

Due to this fact, there has been increasing interest in 

architecture concurrent processing by dual-core, 

multi-core with a support of hyper-threading 

technology.  

Switching to multi-core or Chip-multiprocessors 

(CMP) systems need to be complemented to achieve 

higher levels of performance techniques, such as 

out-of-order execution, branch and value prediction 

and speculative instruction execution. Some computer 

architects have advocated a paradigm shift from high 

performance from high throughput using distributed 

components or dual-core. With this paradigm comes a 

renewed interest in multithreaded architecture. In the 

future, computer architect would focus on 

multithreaded architecture as opposed to single 



threaded architecture. In our research, we would like 

to present the speculative execution method and the 

results of the usage of speculative execution on a 

non-blocking multithreaded architecture. This 

architecture is unique, because it combines the 

advantages of control flow and dataflow system. This 

multithreaded scheduled dataflow (SDF) has been 

researched for a long time [1-4].  

In the past, many have discontinued their 

research in dataflow architecture due to the complex 

hardware for communicating operands among 

instructions. In our architecture we still keep the 

instruction as dataflow model and the synchronization 

at the thread level using control-flow semantics. The 

detailed architecture will be presented in Section 4.  

The speculative execution is an important 

method of Instruction Level Parallelism (ILP). In this 

research, we try to use the speculative execution in 

SDF architecture and explain how we implemented 

the speculative execution. We not only present the 

speculative execution of the SDF architecture but also 

the experiment results using few benchmarks on SDF. 

Multithreading paradigm has been included in 

modern CPUs with the emergence of hyper-threading. 

Multithreaded architecture allows performance design 

tradeoffs that may not be available in single threaded 

machine. Most of the computers used are von 

Neumann architecture or control flow architecture. 

The speculative execution is also researched in control 

flow architecture. Hence, we try to use speculative 

execution in a non-blocking multithreaded 

architecture and observe the performance 

improvement over non-speculative execution. The 

main difference is that the control flow programs are 

partitioned into many procedures and executed based 

on the program counter, but the dataflow program has 

to be executed based on data driven and divided into 

many non-blocking threads in our SDF architecture. 

We extend the original thread, which is a 

non-blocking thread to support speculative thread 

level parallelism. How to run the loop iteration by 

non-blocking thread is a main problem since in the 

iterative processing, the execution must encounter a 

series of branch prediction condition. By using 

speculative execution we try to create many blocking 

threads and compare with the non-speculative 

execution. We will see how the data flows in many 

speculative threads of SDF architecture. However, in 

these architectures we need to extend few new 

instructions to support the speculative execution. No 

matter control flow or dataflow scheme they all need 

additional instructions and registers for speculative 

execution. 

Here, we have used two different simulators with 

the same base engine for non-speculative and 

speculative SDF architecture in order to observe the 

number of instructions and clock cycles. Then, we 

evaluate the CPI (Clock cycles Per Instruction) and 

IPC (Instructions per Clock cycle). After running few 

benchmarks, each benchmarks show significant 

improvement of speculative execution over 

non-speculative execution.  

The reminder of this paper is organized as 

follows. Section 2 presents the background about 

instruction level parallelism and related research on 

speculative execution for many fields. Section 3 

introduces the concept and purpose of speculation in 

detail. Section 4 proposes the speculative execution in 

SDF architecture and compare with the 

non-speculative execution in SDF architecture. The 

experimental results of these two different schemes of 

execution in SDF architecture and its comparison 

using different applications will be presented in 

Section 5. Section 6 draws the conclusions by 

observing these two executed schemes. 

 

 

 



2. Background and Related Research 
 

In this Section, we will present an overview of all 

the related researches for the SDF architecture and 

speculative execution. 

 

2.1 Background 
 

Today, parallel systems apply to accelerate 

processor execution performance. In order to generate 

more efficient parallel language, excellent compilers 

need to produce optimizing scheduled assembly code. 

However, with a sequential application, the compiler 

is difficult to extract parallelism due to some of the 

limitations as follow: 

 sequential program is hard to divide 

 many dependencies will occur in pipeline stage 

 need good algorithm for branch prediction  

 must detect which instructions must be 

rearranged 

In this situation, the speculation is an efficient 

approach that reorders instructions, moving a load 

instruction across a store instruction or an instruction 

across a conditional jump (i.e. branch). Sometimes 

speculative parallelism also called thread-level 

speculation (TLS) that assumes system can execute 

multi-loop level parallelism optimistically. It must be 

divided by converting thread-level parallelism (TLP) 

into instruction-level parallelism. Simultaneous 

multithreading (SMT) is that modern multiple issue 

processors often have more functional unit parallelism 

available than a single thread that can effectively use. 

In the SMT case, the thread-level parallelism and 

instruction-level parallelism are exploited 

simultaneously with multiple threads using the issue 

slots in a single clock cycle. 

 

 

 

2.2 Related Research 
 

Speculative parallelization is introduced in [6]. 

There are two topics that are introduced: 

compiler-based automatic parallelization and 

speculative parallelization. Most compilers focus on 

loop level parallelism and how to execute on 

different loop iterations simultaneously. Hence, to 

develop a parallel algorithm for the compiler is the 

major concept. The main advantage of speculative 

parallelization is that it can automatically parallelize 

loop of sequential program and does not need to 

know the dependence at compile time. 

The compiler that can support for dynamic 

speculative pre-execution has been proposed in [7]. 

Various forms of speculative pre-execution have been 

developed, including hardware-based and 

software-based approaches. The hardware-based 

requires a complex implementation and lacks global 

information such as data flow and control flow. The 

other approach cannot deal with dynamic events and 

imposes additional software overhead. In this research, 

they enhance novel compiler to support for the 

dynamic pre-execution of a pre-fetching thread which 

contains the future probable cache miss instructions 

that can run on the spare hardware context for data 

pre-fetching. 

The data speculative multithreaded architecture 

is mentioned in [8]. Their research presents a novel 

processor for micro-architectures, called Data 

Speculative Multithreaded Architecture (DaSM) that 

relieves three of the most important bottlenecks (data 

dependencies, a relatively small instruction window, 

and a limited fetch bandwidth respectively) of 

superscalar processor. DaSM does not modify the 

ordinary programs compiled for a superscalar 

processor implementation. Their processor 

implements an effective large instruction window that 

is made up of several non-adjacent small windows. 



Each small window is built using the conventional 

control speculation approach whereas the creation of a 

new window is based on speculating on highly 

predictable branches. Their research is the 

combination of the data speculation and multiple 

threads of control in a promising alternative to relieve 

the most critical bottlenecks of current superscalar 

microprocessors. 

 Some researchers also have exploited the effect 

of speculative execution on cache performance [9]. 

The ideal method for examining the cache 

performance of a speculative processor is to generate 

memory reference traces with a full execution 

simulator and use them as input to a cache simulator. 

The main result of the study is that deep speculation 

causes a significant increase by usually less than 15%. 

In fact, by calculating the traffic ratio they found that 

cache efficiency actually increases as speculation 

increase. 

By using speculative computation and 

parallelizing techniques to improve scheduling of 

control-based design is presented in [10]. They 

improve the already proposed ILP scheduling 

approaches by extending the case of speculative 

computation. This means that the standard techniques 

for high-level synthesis can be considered obsolete in 

certain number of new designs. To deal with this 

problem, the effectiveness of speculative code is 

transformed into mixed control and data flow design 

to reduce the length of the result schedules. 

In the next chapter, we will present in detail 

about speculative execution in computer architecture 

of this particular research. How to apply speculative 

execution, pipeline execution and instruction set 

architecture on Scheduled Dataflow architecture will 

be presented in section 4. 

 

 

 

3. Speculative Execution 
 

In any program execution, there are part of the 

program that which should be executed, other part of 

the program which should not be executed and finally 

there are statements that cannot be proven to be in 

either of the two above mentioned. Speculative 

execution is that which part of the program cannot be 

proven either certainly to be run or not to be run. 

The speculative execution is that part of the code 

to be run concurrently until it is proven that they are 

not needed. Speculative execution means performance 

optimization for the program by running certain part 

of the program concurrently or in parallel in a 

multithreaded architecture. It is useful by running 

early, which consumes less time and space. In this 

chapter we will discuss about all the speculative 

concepts and how it is used in the modern 

microprocessors. 

 

3.1 The Speculative Execution and the 
Modern Microprocessors 
 

In modern pipelined microprocessors, 

speculative execution is used to reduce the cost of 

conditional branch instructions. Branch condition may 

not be known until the branch is evaluated. Hence, 

branch prediction technique is used which is to guess 

the most likely to branch direction. If it is proven 

wrong, the executed part of the code is discarded. 

Those discarded instructions consume CPU cycles and 

power consumption in an embedded systems or laptop 

computers. Definitely for the miss-predicted branches 

there will be penalty. Modern microprocessors have 

conditional move instructions. These instructions 

move data if the condition is met. In this situation it 

eliminates branching.  

The speculative execution means early execution 

and is often cheaper because the value needed for the 



computation or execution is brought in before. When a 

program starts executing an array of 10,000 we can 

think of bringing the data early knowing that the 

program would need all the data in an array. It can 

also be said as prediction. In the case of prediction, we 

try to predict what should be done and knowing what 

should be done, we apply the early known direction. 

We need to also design a strong prediction algorithm. 

In the case of speculative execution no prediction is 

made before hand. Eager evaluation is also a form of 

speculative evaluation. What is an eager evaluation? 

Figure 3-1 shows an example of eager evaluation.  

 

 

x = (6 + 8) * (1+2^3) 

printf(“%d”,x); 

printf(“%d”,x+3); 

Figure 3-1 Eager Evaluation 

 

In the above situation, x can be evaluated early 

and stored as 126. Thus, we can reduce the storage 

and also print statement can be evaluated once instead 

of twice. This form of speculative evaluation reduces 

storage and number of calculations to one. 

 The speculative execution approach in a modern 

processor would exploit the increasing abundance of 

spare processing cycles to execute ahead of time 

certain instructions for applications that would 

otherwise stall on disk I/O. When an application needs 

some data and if that data may not be in memory, it 

needs to be fetched from disk stalling the CPU. 

Speculative execution approach uses these cycles to 

fetch the data needed in the future rather than stalling 

the CPU later on when similar situation arises. 

Modern microprocessors use speculative 

execution to decrease the clock cycle cost of 

conditional jump instructions and more advanced 

processors add the branch prediction for control 

speculative execution. 

 

If (i = = j)      ; condition 

then A = B + C    ; statement 1 

else D = E + F    ; statement 2 

Figure 3-2 A Code for Control Condition 

 

Figure 3-2 shows an example of conditional 

execution. In the above situation, if, then, and else are 

the branch instructions. The condition i = = j will 

decide which statement must be executed. An 

advanced processor speculatively executes both the 

statement1 and statement2 at the same time. Then, 

discard one of the statements that does not need. The 

other method is to ‘guess’ by using branch prediction 

that only executes one statement that likely to result. 

Sometimes, the processor must undo one statement if 

the processor finds that executed the wrong statement. 

The branch prediction schemes are usually 

implemented by hardware. 

The VLIW (Very Long Instruction Word) and 

superscalar architecture are both static and dynamic 

technique for speculation. In a VLIW, the compiler 

wants to target a wide-issue processor so that the 

compiler would be necessary to develop a region 

scheduling technique by speculation such as trace 

scheduling. A superscalar processor executes one or 

more instructions that can issue in a single pipeline 

stage by using speculative execution to pre-fetching 

multiple instructions simultaneously. This processor 

still requires that the compiler to schedule instruction. 

Hence, the speculative execution is an efficient way of 

instruction scheduling for VLIW and superscalar 

architecture. No matter in VLIW or superscalar, the 

purpose of execution is to decrease the CPI (Clock 

cycles Per Instruction) and increase the IPC 



(Instructions Per clock Cycle) by using speculative 

execution. 

 

3.2 Speculative Execution on Multithreaded 
Processors 
 

A dual core or multi-core microprocessor 

implements multiprocessing in a single physical 

package. The multithreading paradigm complements 

the multi-core to exploit instruction level parallelism. 

The goal of multithreading hardware support is to 

allow quick switching between a blocked thread and 

another thread ready to run. Speculation at this level 

in a multithreaded multi-core processor can overcome 

the limitations in dividing a single program into 

multiple threads. Thus, it can enhance performance 

through parallelization. A speculatively multithreaded 

multi-core processor can perform parallel execution of 

a conventional sequential program. If we use a 

non-speculative multithreaded program, it 

conservatively divides the program and its mutual 

independence and execution can be only guaranteed. 

With a speculative execution there would be a high 

probability of execution. 

According to Sohi and Roth, where it is control 

driven or data driven, speculation can aggressively 

divide the program into multiple threads that can 

guarantee high probability of execution in a 

multithreaded processor [12]. The speculative 

multithreading model considers each program region 

into a separate thread that guarantees high degree of 

parallelism, whether it is control driven or data driven. 

 

3.2.1 Non-speculative Control-driven VS. 
Speculative Control-driven 
 

The programs are divided into control-driven 

threads via control flow boundaries. In control-driven 

multithreading, the thread executes the contiguous 

segments and reconstructs the sequential execution by 

dividing the dynamic instructions. Based on this 

situation, we have to find the division point in order to 

minimize inter-thread data dependencies. 

In non-speculative control-driven multithreading, 

it must guarantee two special scenarios. There are 

execution-certainty and data-integrity of threads. In 

fact, the thread cannot be undone. In order to achieve 

execution-certainty and maximize concurrency, the 

non-speculative control-driven thread can only be 

forked for execution. The data-integrity must be 

noticed when the data are shared among threads. It 

means the thread accessing to memory location with 

other threads must be synchronized. These situations 

and dividing a program into non-speculative 

control-driven threads are relied on the programmer 

and compiler. The programmer must understand 

clearly the parallel algorithm for data-sharing and 

minimizing synchronization among different 

control-driven threads. 

In the above problems, it can be solved by using 

speculation. In speculative control-driven 

multithreading, the threads reconstruct the correct 

total order of memory operations. In general, these 

works can be detected and recovered from inter-thread 

memory ordering violations for hardware support in 

speculative control-driven threads. With such support, 

the hardware can buffer or undo an entire 

control-driven thread, and change its architected state. 

The threads cannot be guaranteed at their final 

usefulness when the threads are spawned. Hence, the 

usefulness likelihood is high and the parallelism 

characteristics are more important. 

 

3.2.2 Non-speculative Data-driven VS. 
Speculative Data-driven 
 

The other model is dividing programs into 

data-driven multithreads via dataflow boundaries. The 



creation or execution of the data-driven thread is 

relied on loading data. In other words, the data-driven 

threads only need the inputs to trigger their execution. 

Sometimes, a data-driven thread is triggered by 

receiving previous data-driven thread and then sends 

the results to a next data-driven thread. In general, 

converting the imperative code to data-driven code 

can only be constructed for code written in 

data-driven language. The non-speculative data-driven 

threads have two major problems. First, we must 

ensure the programs can be divided into data-driven 

multithreads. Second, the programmer usually creates 

the sequential semantics so the resulting presentation 

will break for imperative programs. 

The speculation is also to solve these problems. 

The data-driven threads usually need the additional 

assisted thread when run ahead or pre-execute. Hence, 

the purpose of speculation is to reduce the additional 

assisted thread in speculative data-driven threads. The 

data-driven multithread will be constructed via 

dataflow information, and spawned to pre-execute at 

some instructions that might cause problem in the 

future. It has the option of using the result directly or 

repeating the execution. 

 

3.3 Speculative Execution on a Non-blocking 
Multithreaded Architecture 
 

The gap between processing speeds and disk 

access time has been increasing every year. Memory 

sizes have been increasing rapidly, so too the 

application data requirements. We use a non-blocking 

multithreaded architecture and a decoupled 

architecture where a synchronization processor, which 

fetches the data from memory, and the execution 

processor execute the operands that are stored in the 

registers, are used to build the gap. 

Instead of stalling Execution Processor (EP) for 

slow memory while fetching, Synchronization (SP) is 

used to fetch the data from memory. We do 

speculative execution by exploiting the knowledge 

and information that is available. In this approach we 

pre-fetch for virtual memory accesses as well as 

explicit I/O calls, enabling it to provide the benefit 

regardless of the I/O access methods used in any 

applications. Here we use the mechanism to estimate 

the impact of memory use by speculative execution on 

SDF system performance, and thereby controlling 

speculative execution when memory resources are not 

abundant. 

In our research, we create the speculative thread 

differently from the normal thread. We also extend the 

instructions for speculative execution on SDF 

architecture. In general, in the loop iteration that 

usually uses the value from previous loop iteration. 

Due to this reason, the speculative execution on SDF 

architecture executes the speculative thread to ‘guess’ 

the result that will be used for the next iteration. The 

benefit of this is, it does not need additional threads. 

The other factor that affects the execution time is 

the I-structure mechanism on speculative execution of 

SDF architecture. In modern architectures, arrays are 

used to store data. The feature of I-structure 

mechanism is that write once, read many times. Hence, 

here we use I-structure instead of array. We offer a 

new instruction and algorithm for pre-fetching from 

I-structure memory. In other words, we need to 

calculate the distance for pre-fetch in order to 

pre-execute on speculative execution. For example, if 

the input value is ‘N’ for iteration times, the distance 

is N/2. When input value is 10, the distance is 5 for 

pre-fetch. While the program is fetching data from 

position 2 of I-structure, it will pre-fetch data from 

position 7 of I-structure. In section 4, we will discuss 

in more detail about this extension of instruction set, 

speculative thread structure and iteration in 

speculative execution of SDF architecture.  

In section 5, we present the algorithm to 



calculate the distance for pre-fetching I-structure 

memory and various other benchmarks results. 

 

4. Non-blocking Multithreaded 
Architecture 
 

In this section we will present the non-blocking 

multithreaded architecture that we have used for our 

implementation and experimentation. We will also 

explain how we implemented a speculative and 

non-speculative execution. 

 

4.1 Scheduled Data Flow (SDF) Architecture 
Overview 
 

Most of the computers used are von Neumann 

model where the program executes using control flow 

architecture. In the control flow scheme, a program 

will be partitioned into many procedures (or functions, 

modules, methods, etc.) Programs are executed based 

on the program counter. But in SDF architecture, a 

program has to be divided into many non-blocking 

threads. Each thread has several code blocks and is 

divided into three portions, which are pre-load, 

execute and post-store sequentially.  

 

4.1.1 Non-blocking Thread Structure 
 

The SDF architecture uses two processors, which 

are Synchronization Processor (SP) and Execution 

Processor (EP) to follow the precedent decoupled 

architecture’s AP and EP [14]. Pre-load and Post-store 

portions of a thread can be executed by 

Synchronization Processor (SP). Execute portion of a 

thread can be executed by Execution Processor (EP). 

Figure 4-1 shows this structure. In other words, SDF 

architecture has three main components: 

Synchronization Processor (SP), Execution Processor 

(EP) and thread schedule unit. Each thread is 

represented by four continuations: FP, IP, RS, and SC. 

FP is the Frame Pointer that is responsible for 

inputting and storing values by a thread. IP means the 

Instruction Pointer, which points to the thread code. 

RS represents a dynamically allocated register context 

that is a Register Set. SC is Synchronization Count 

that is the number of inputs needed for a thread before 

it can be scheduled for execution. 

 

 
Figure 4-1 Thread Structure for SDF Architecture 

 

When a thread receives its values, the 

synchronization count will be decremented until the 

count value becomes zero and the thread is scheduled 

on SP. The frame memory is allocated simultaneously 

while a thread is being created. The data needed for 

the thread is stored into the related frame memory. SP 

will pre-load data from frame memory into the 

thread’s register context. This is the role of SP to 

execute thread’s pre-load portion. SP is also 

responsible for a thread’s post-store portion. When a 

thread terminates its job, if the result is needed for 

other threads, they will store the result into the related 

frame memory for other threads to load its data. The 

I/O instructions such as INPUT (read the value from 

the device) or OUTPUT (write the result to the device) 

is also done by SP in pre-loading portion (or 

post-store portion). The other processor is EP that is 

responsible for threads execution portion. The EP not 

only includes the arithmetic instructions (e.g. ADD, 

MUL) but also is responsible for frame allocation by 



using instruction such as FALLOC (allocates and 

initializes a frame memory for a thread). The SDF 

code uses RR instructions to store a pair of 

consecutive registers. For instance, ADD RR2 means 

that does ADD operation using registers R2 and R3. 
The compiler for SDF should divide any high level 

program into many threads. Since the compiler is not 

ready at the moment, we use assembly language to 

evaluate speculative and non-speculative threads. 

 

4.1.2 Execution and Synchronization Pipeline 
 

First, we describe the execution pipeline that has 

four units: instruction fetch, decode, execute, and 

write back (see Figure 4-2). Instruction fetch unit is 

similar to a normal fetch unit that behaves like 

program counter that points to the next instruction. 

Decode and register fetch units obtain a pair of 

registers that contain two source operands for the 

instruction. Execute unit executes the instruction and 

sends the results to write-back unit along with the 

destination register numbers. Write back unit writes 

two values to the register file. 

 

 
Figure 4-2 Execution Pipeline (EP) 

 

Second, we continue to describe the other 

pipeline that is synchronization pipeline. The 

synchronization pipeline has five stages: instruction 

fetch, decode, memory access, effective address, and 

write-back (see Figure 4-3). As mentioned earlier, the 

synchronization pipeline handles pre-load and 

post-store instructions. 

 

Figure 4-3 Synchronization Pipeline (SP) 

 

The instruction fetch unit retrieves an instruction 

belonging to the current thread using program counter. 

The decode unit decodes the instruction and fetches 

registers. The effective address unit computes 

addresses for LOAD and STORE instructions. LOAD 

and STORE instructions only reference the frame 

memories of threads by using a Frame Pointer (FP) 

and an offset into the frames; both of which are 

contained in registers. The memory access unit 

completes LOAD and STORE instructions. Pursuant 

to a post-store, the synchronization count of a thread 

is decremented. The write-back unit completes LOAD 

(pre-load) and IFETCH instructions by storing the 

values in appropriate registers. 

 

4.2 Non-speculative Execution in SDF 
Architecture 
 

In this section, we will describe the original 

execution of SDF architecture and how to run the loop 

iteration by non-blocking threads. Figure 4-4 presents 

the original method for loop iteration execution. In the 

original method that is a non-speculative execution 

that needs two threads to procure single loop iteration. 

One thread’s function does the operation of loop 

iteration; the other thread is responsible to check loop 



condition. 

 

 
Figure 4-4 A Non-speculative Iteration Execution 

 

We use the “FALLOC” instruction to allocate the 

frame memory for the specified thread checking 

condition. The thread uses the frame pointer and the 

offset to load or store data from frame memory. When 

the thread sends the data to the other thread, we use 

the “STORE” instruction to pass the data via frame 

memory. If the thread, which is responsible for 

checking the loop, decides whether the condition is 

valid, it will free the frame memory for loop. So we 

always use the “FFREE” instruction to release the 

thread and the frame memory. This is how the 

non-speculative thread execution is performed. 

 

4.3 Speculative Execution in SDF Architecture 
 

In this section, we will describe the speculative 

execution using SDF architecture and how to run the 

loop iteration by speculative threads. 

 

4.3.1 Extension of Instruction Set and the 
Thread Structure 
 

In order to speculate a program by using SDF 

code, we must add few new instructions. Speculative 

thread also must be modified differently from the 

non-speculative thread. Figure 4-5 shows the new 

thread structure for speculative mechanism, which we 

can compare with Figure 4-1. 

 
Figure 4-5 Speculative Thread 

 

Speculative thread also consists of three parts 

that are ‘pre-load’, ‘execute’ and ‘post-store’. In the 

SP phase, the speculative thread’s function is same as 

the previous thread and it not only can fetch data from 

I-structure memory but also use ‘SREAD’ (by 

calculating the distance for speculative read) 

instruction to pre-fetch data from I-structure memory. 

In the ‘execution’ part, it can speculate an execution. 

By allocating a frame memory for speculative thread, 

it uses ‘SFALLOC’ (associate a speculative frame to a 

code-block) instruction to allocate speculative frame 

memory. We can use PUT (put value into any register) 

instruction instead of PUTR1 (put immediate data into 

register R1) instruction in order to solve the 

dependence. 

 

4.3.2 Iteration in Speculative Execution 
 

In the iterative processing, the execution must 

encounter a series of branch prediction condition. If 

we use branch instruction in EP phase, it will predict 

the result and use ‘FORKEP’ (Schedule the execution 

of code on Execution Processor) instruction executing 

EP again. The speculative thread does not wait to 

execute and choose in which SP must be executed. 

The benefit of this mechanism is that we don’t need 



the other threads to check for the branching condition. 

 

 
Figure 4-6 A Speculative Iteration Execution 

 

Figure 4-6 presents this method where we can 

compare with Figure 4-4. In the original method that 

needs the other thread that is responsible to check the 

loop condition. But in the loop iteration that usually 

uses the result from previous loop iteration. According 

to this attribute, the speculative thread ‘guess’ the 

result that will be used for the next iteration. The 

speculative thread allocates the result into the 

speculative frame memory for the next speculative 

thread pre-load. In the loop iteration, the thread 

usually will be executed early so that pre-execute can 

reduce the execution time. 

Two flow paths are decided while speculative 

frame memory stores the data from speculative thread. 

One path is executed by ‘predict correct’ situation, 

then speculative thread is continued to execute. The 

other path is executed by ‘predict incorrect’ situation, 

which means the other loop condition that occurs must 

exit the loop iteration, then sends the data to other 

threads and free the current speculative thread. The 

branch prediction result will be known in EP phase of 

speculative thread. The benefit of this is that it does 

not need additional frame memory and the threads to 

check it. 

In the next chapter, we will present seven 

programs that are used to implement the comparisons 

of these two schemes. According to the experimental 

results, we can note the better performance 

improvement by using the speculative execution in 

SDF. 

 

 

5. Speculative VS. Non-speculative 
Benchmark Evaluation 

 
5.1 Benchmarks used to Experiment 
 

In this chapter we will present the experiment 

results. Some benchmarks are without using 

I-structure memory and other benchmarks are using 

I-structure memory. Simple benchmark such as 

running a loop where the program is entered ‘n’ and it 

adds 1 to n. Then the other benchmarks such as 

factorial program, Fibonacci program and prime 

number program are also presented. Using I-structure 

programs are Loop_IFETCH program which fetches 

data from the I-structure memory; matrix 

multiplication and linear search (add the data to be 

searched are stored in the I-structure). All the 

programs are written and tested by using speculative 

and non-speculative scheme. For these experiments 

we used two different simulators to estimate 

program’s execution clock cycles and instructions in 

order to calculate CPI (Clock cycles per Instruction) 

and IPC (Instructions per Clock). One was an SDF 

simulator that uses a speculative execution. The other 

simulator uses a non-speculative execution.  

The environment variables are set for the frame 

allocation policy, maximum number of frames, frame 

size and maximum number of register sets 

respectively as follows. (see Figure 5-1). The 

computer system and architecture lab of Fu Jen 

Catholic University department of Computer Science 

& Information Engineering maintains these 

simulators. 



 

Operations Description 

-fpolicy cq | st | sh 

Set frame allocation policy 

(cq=circular queue, st=stack, 

sh=stackh) 

-frames 

NO_OF_FRAMES 
Set maximum number of frames 

-fsize WORDS Set frame size 

-regsets 

NO_OF_REGSETS  

Set maximum number of register 

sets 

Operations Setting 

FRAME SIZE = 256 

FRAMES PER PROCESSOR = 256 

REGISTER SETS PER PROCESSOR = 64 

FRAME ALLOCATION POLICY = 0/1 

Figure 5-1 Environment Variables Setting 

 

In the following paragraph we will present the 

method of execution for various benchmarks and 

results are presented. We will also present the IPC and 

the CPI for these benchmarks. 

 

5.2 Programs without I-structure Usage 
 

In this and the next section, we will present the 

experimental results that use seven different typical 

programs. These program comparison include 

summation, factorial calculation, Fibonacci and prime 

number. Table 5-1 presents the results of a simple 

summation using a single loop. The program uses 

different data size such as 1000 to 5000. The first 

column shows the data sizes from 1000 to 5000. 

Second column presents clock cycles for various data 

sizes. In the third column we present the total number 

of instructions used for various data size of the 

program. The fourth and the fifth column present the 

CPI and the IPC for non-speculative execution. 

 

 

Table 5-1 Summation Program 

Non-speculative 

Data size
Clock 

Cycles
Instructions CPI IPC 

1000 156857 75023 2.091 0.478 

2000 313641 150023 2.091 0.478 

3000 470443 225023 2.091 0.478 

4000 627227 300023 2.091 0.478 

5000 784011 375023 2.091 0.478 

Speculative 

Data size
Clock 

Cycles
Instructions CPI IPC 

1000 36094 27037 1.335 0.749 

2000 72094 54037 1.334 0.750 

3000 108094 81037 1.334 0.750 

4000 144094 108037 1.334 0.750 

5000 180094 135037 1.334 0.750 

 

The CPI for the non-speculative execution is 

consistent for various data size, which is 2.091. The 

IPC is also consistent for various data size, which is 

0.478. Similarly, the same program was written for 

speculative execution. The result decreases the CPI 

from 2.091 to 1.334 and increases the IPC from 0.478 

to 0.749. The speculative and non-speculative 

execution for the sake of simplicity, we keep the cycle 

count as 1 cycle for all the instructions irrespective of 

various opcodes. In a real architecture environment 

the cycles may very depending on the type of opcodes. 

In some environment it could take 50 to 100 cycles for 

opcodes such as multiply instructions. 

Table 5-2 shows the results of factorial program. 

The factorial program uses a single loop and also 

invokes computational data sizes from 5 to 25 for 

speculative execution and non-speculative execution. 

We use a non-recursive version of the factorial 

program calculation. 



Table 5-2 Factorial Calculation Program 

Non-speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

5 840 398 2.111 0.474 

10 1625 773 2.102 0.476 

15 2410 1148 2.099 0.476 

20 3195 1523 2.098 0.477 

25 3980 1898 2.097 0.477 

Speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

5 273 171 1.596 0.626 

10 453 306 1.480 0.675 

15 633 441 1.435 0.697 

20 813 576 1.411 0.708 

25 993 711 1.397 0.716 

 

Table 5-2 presents non-speculative execution, 

where we can find the CPI is about 2.1 and the IPC is 

about 0.477. It shows not only very significant 

improvement for various data sizes but also great 

improvement in clock cycles. In speculative execution, 

as the previous program we transfer speculative 

instructions to execute in this program. We can 

observe that the CPI and IPC here too. The CPI is 

about 1.4 and the IPC is about 0.7. It shows more 

significant improvement for non-speculative 

execution. 

Table 5-3 Fibonacci Program 

Non-speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

5 520 274 1.898 0.527 

15 1660 894 1.857 0.539 

25 2800 1514 1.849 0.541 

35 3940 2134 1.846 0.542 

45 5080 2754 1.845 0.542 

Speculative 

Data size
Clock 

Cycles 
Instructions CPI IPC 

5 222 138 1.609 0.622 

15 622 448 1.388 0.720 

25 1022 758 1.348 0.742 

35 1422 1068 1.331 0.751 

45 1822 1378 1.322 0.756 

 

In our experimental Fibonacci program, we write 

Fibonacci assembly program by using non-recursive 

method because recursive method will use additional 

registers to cause not enough register situation, but 

also frame memory. In dataflow architecture the 

recursive programs may not be suitable. In a recursive 

program one thread spawn another thread and so on. 

Thus, there will not be many parallelism to exploit 

implicit parallelism by having multithreaded 

architecture. Table 5-3 presents the results of this 

program. The CPI is about 1.85 and the IPC is roughly 

about 0.54 in non-speculative execution. But in 

speculative execution, the CPI is reduced from 1.85 to 

1.34 and the IPC increased from 0.54 to 0.75. We can 

see the similar result for the factorial program too. 

Table 5-4 presents the results for prime number 

program, which shows IPC over 1. This program is a 

simple prime number search program, where the user 

enters n, and the program finds all the prime number 

between 1 and n. The CPI is about 1.31 and the IPC is 

about 0.76 in non-speculative execution. The values 

are stable even for different data sizes. In speculative 

execution, the CPI is 0.807 and the IPC is 1.239 for 

different data sizes. Table 5-4 shows similarly for 

various data sizes, the IPC values we can see the 

improvement. 

 

 

 



Table 5-4 Prime Number Program 

Non-speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

100 81361 61594 1.321 0.757 

200 303627 231027 1.314 0.761 

300 588279 446995 1.316 0.760 

400 976091 741663 1.316 0.760 

500 1498501 1138104 1.317 0.759 

Speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

100 28087 34518 0.814 1.229 

200 100871 125051 0.807 1.240 

300 193535 239707 0.807 1.239 

400 318973 395287 0.807 1.239 

500 487223 603804 0.807 1.239 

 
5.3 Programs with I-Structure Usage 
 

The I-structure is the feature of data flow 

architecture to fetch/store data and it has the 

characteristic that write once, read many times. 

I-structure affects the execution time where the data is 

read from memory and stores the data for the first 

time in memory. Any memory read can be done many 

times, but write could lead to further data hazards. 

Since I-structure usually causes data hazard, it can be 

a bottleneck in the dataflow architectures. The 

possible data hazards are RAW (read after write), 

WAW (write after write) and WAR (write after read). 

Note that RAR (read after read) case is not a hazard. 

In the following, three programs use I-structure for 

these comparisons are Loop_IFETCH, matrix 

multiplication and sequential search algorithm 

respectively. In a common architecture we use arrays 

as a memory to store data. Here we use I-structure 

instead of array. Since this architecture uses a 

dataflow like instruction execution we use I-structure 

instead of an array. 

First is the Loop_IFETCH program. This 

program uses a single loop and I-structure to store the 

data. Actually, the Loop_IFETCH is designed 

program that’s function produces a series of fetching 

notion at the same memory location. It will cause 

consecutive RAW and WAR. In other words, the 

Loop_IFETCH program is similar to summation 

program. Initially we write all the data in I-structure 

then read and operate the data from I-structure 

memory. Following this model we also use 

pre-fetching mechanism by using SREAD instruction. 

Hence, SREAD is introduced as a speculative read 

operation. By using this method we need to calculate 

the distance for pre-fetch. In this case, the distance is 

calculated by dividing iteration number of times. For 

example, if we input “N” for iteration times, the 

distance is N/2. When input value is 10, the distance 

value is 5 for pre-fetch. While the program is fetching 

data from position 1 of I-structure, it will pre-fetch 

data from position 6 of I-structure. Figure 5-2 presents 

this concept by using high-level language. 

 

 

Add 1 to N by using speculative 

input n and only run n/2 rounds 

  for(i=1;i<n/2;i++) 

  { 

    a=hash[f[i]]; 

    a=a + hash[f[i+n/2]]; 

    hash[0]+=a; 

  } 

Figure 5-2 Loop_IFETCH Program Described 

Using C language 

 

 

 



Table 5-5 Summation Program Using I-Fetch 

Non-speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

200 16094 12026 1.338 0.747 

400 32094 24026 1.336 0.749 

600 48094 36026 1.335 0.749 

800 64094 48026 1.335 0.749 

1000 80094 60026 1.334 0.749 

Speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

200 3764 3607 1.044 0.958 

400 7464 7207 1.036 0.966 

600 11164 10807 1.033 0.968 

800 14864 14407 1.032 0.969 

1000 18564 18007 1.031 0.970 

 

 

From table 5-5 we can observe that the CPI is 

about 1.33 and the IPC is about 0.479 for 

non-speculative execution. Whereas the speculative 

execution, the CPI is about 1.03 and the IPC is about 

0.96. No matter how much the data size is increased, 

the execution is very stable in speculative or 

non-speculative scheme. In spite of the high number 

of fetches, the CPI is very low in speculative 

execution. It again verifies that the speculative 

execution mechanism presents an excellent paradigm 

to obtain a better execution performance as compared 

to non-speculative execution mechanism. 

The second program is matrix multiplication. 

Table 5-6 presents the results of running matrix 

multiplication using different sizes of data. This 

program uses three nested loops and also uses 

I-structure applying speculative and non-speculative 

mechanisms. Matrix multiplication program performs 

several calculation in the inner most loop. 

A[ ] and B[ ] are stored in the I-structure memory. 

Matrix multiplication needs an awful lot of calculation 

for addition and multiplication and I-structure 

simultaneously. In this program, we use two SREAD 

instructions for pre-fetching. The distance is divided 

in the third loop. Figure 5-3 shows this method in the 

high level language as well as in a simple pseudo code 

to apply speculative execution. 

 

 

Non-speculative Execution 

Program 

for(i=0;i<N;i++) 

   for(j=0;j<N;j++) 

    for(k=0;k<N;k++) 

    { 

  C[i][j] += A[i][k] * B[k][j];

    } 

Speculative Execution 

Program 

for(i=0;i<N;i++) 

for(j=0;j<N;j++) 

for(k=0;k<N/2;k++) 

{  

a = A[i][k] * B[k][j]; 

b= A[i][k+D] * B[k+D][j]; 

C[i][j] += a+b;  

} 

Example: 4 x 4 

C[1][1] + = A[1][0] x B[0][1]

C[1][1] + = A[1][1] x B[1][1]

C[1][1] + = A[1][2] x B[2][1]

C[1][1] + = A[1][3] x B[3][1]

Example: 4 x 4 

C[1][1] + = A[1][0] x B[0][1]

+ A[1][2] x B[2][1] 

C[1][1] + = A[1][1] x B[1][1]

        + A[1][3] x B[3][1] 

 

Figure 5-3 Matrix Multiplication Described Using 

C language 

The matrix multiplication program experimental 

results are similar to the first program, summation 

program, where the SDF program has to access 

I-structure memory. Table 5-6 presents the CPI, which 

is about 1.6, and the IPC is about 1.2 for 

non-speculative execution. This shows the situation 

where the value is very stable for matrix 

multiplication program. In speculative execution, the 

CPI is about 1.2 and the IPC is about 0.8, these values 

are also similar for matrix multiplication program. 



After running for various data sizes from 2 * 2 to 32 * 

32, the performance improvement is about 1.2 in all 

cases. 

Table 5-6 Matrix Multiplication 

Non-speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

2x2 2283 1383 1.651 0.606 

4x4 8587 5237 1.640 0.610 

8x8 32673 20409 1.601 0.625 

16x16 127423 80609 1.581 0.633 

32x32 518859 320433 1.619 0.618 

Speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

2x2 984 755 1.303 0.767 

4x4 3324 2643 1.258 0.795 

8x8 12372 9947 1.244 0.804 

16x16 47940 38667 1.240 0.807 

32x32 191376 152555 1.254 0.797 

 

Final program is a linear search. Linear search 

program also uses a single loop and I-structure to 

store the data. The process of searching data must be 

considered for this program, like EQ or NE opcodes, 

in order to execute correctly for the given program. 

Because the speculative execution applies branch 

prediction and dynamic scheduling method, process of 

pipeline execution will reorder some instructions. 

Table 5-7 Linear Search 

Non-speculative 

Data size 
Clock 

Cycles 
Instructions CPI IPC 

500 60998 32524 1.875 0.533 

1000 121926 65024 1.875 0.533 

1500 182854 97524 1.875 0.533 

2000 243782 130024 1.875 0.533 

2500 304710 162524 1.875 0.533 

Speculative 

Data size
Clock 

Cycles 
Instructions CPI IPC 

500 16061 11513 1.395 0.717 

1000 32061 23013 1.393 0.718 

1500 48061 34513 1.393 0.718 

2000 64061 46013 1.392 0.718 

2500 80061 57513 1.392 0.718 

 

Table 5-7 presents the results of linear search. 

The CPI for the non-speculative execution is 

consistent for various data sizes. The IPC is also 

consistent for various data sizes, which are about 

0.533. Similarly, the same program was written for 

speculative execution. The CPI is 1.39 and the IPC is 

0.718. 

5.4 Analysis of the CPI Improvement 
In this section, we extract the CPI from all the 

experiment of program in order to understand the 

execution performance clearly. Since the CPI is a 

common measurement unit, many computer 

architectures always use this method for presenting 

the improvement between various architectures.  

Table 5-8 Average CPI without I-structure 

Non-speculative 

Sum Factorial Fibonacci Prime Average

2.091 2.111 1.898 1.321 1.855 

2.091 2.102 1.857 1.314 1.841 

2.091 2.099 1.849 1.316 1.839 

2.091 2.098 1.846 1.316 1.838 

2.091 2.097 1.845 1.317 1.837 

Speculative 

Sum Factorial Fibonacci Prime Average

1.335 1.596 1.609 0.814 1.338 

1.334 1.480 1.388 0.807 1.252 

1.334 1.435 1.348 0.807 1.231 

1.334 1.411 1.331 0.807 1.221 

1.334 1.397 1.322 0.807 1.215 



Average CPI without I-structure

0.000

0.500

1.000

1.500

2.000

2.500

1 2 3 4 5

C
P

I non-sp

sp

 
Figure 5-4 IPC Graph Using Table 5-8 

 

 

Table 5-8 presents the average CPI without 

I-structure usage. First column presents the CPI for 

summation program, second column presents the 

factorial program, third column presents Fibonacci 

program, fourth column presents prime number 

program, and final column shows the average for 

non-speculative execution. The average CPI is about 

1.8. For speculative execution part, the average CPI is 

about 1.2 better than non-speculative execution. 

Table 5-9 also presents the average CPI with 

I-structure usage. First column presents summation 

program, second column presents matrix 

multiplication program, third column presents linear 

search program, and the final column is average CPI 

using non-speculative execution. The average CPI is 

about 1.6. Using speculative execution part, the 

average CPI is about 1.2 better than non-speculative 

execution. 

 

 

Table 5-9 Average CPI with I-structure 

Non-speculative 

IFETCH Matrix Search Average

1.338 1.651 1.875 1.621 

1.336 1.640 1.875 1.617 

1.335 1.601 1.875 1.604 

1.335 1.581 1.875 1.597 

1.334 1.619 1.875 1.609 

Speculative 

IFETCH Matrix Search Average

1.044 1.303 1.395 1.247 

1.036 1.258 1.393 1.229 

1.033 1.244 1.393 1.223 

1.032 1.240 1.392 1.221 

1.031 1.254 1.392 1.226 
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Figure 5-5. IPC Graph Using Table 5-9 

 

According to our experimental results no matter 

whether we use or not use I-structure mechanism, the 

speculative execution has better performance than the 

non-speculative execution. Speculative execution is a 

form of prediction where it encounters a loop and the 

fetching of data, it can assume that the data needed 

can be fetched ahead of time and save many cycles. 

As a result, the CPI as well as IPC is improved. 

 

 

6. Conclusions 
 

The main goal of this research is to provide a 

qualitative evaluation of a unique non-blocking 

multithreaded architecture that clearly decouples all 

memory access from the execution pipeline. Even 

though previously reported that this architecture 

achieves scalable performance that is comparable to 

simple scalar architecture in this research, we show 

the speculative execution vs. non-speculative 



execution of multithreaded architecture. 

We can exploit ILP by using SP and EP 

concurrently and TLP by using multithreading 

technique simultaneously. The hardware used in SDF 

is much simpler. It is also possible to build several 

processors on a single chip to further speedup the 

execution. There are several projects for implementing 

multiple processors on the same chip as an effective 

use of extra chip area. 

 By using speculative execution of SDF 

architecture it has better performance than 

non-speculative execution of SDF architecture. We 

can show that the speculation is a method that has 

branch prediction in dynamic scheduling. The 

speculative execution is a ‘guess’ behavior that wants 

to reduce data hazard and control hazard stalls at the 

same time. In other words, the purpose of a 

speculative execution is that the branch could be 

executed earlier for solving dependences and hazards. 

In the original SDF implementation, the 

non-speculative execution needs two threads to 

procure single loop iteration. One thread does the 

operation of loop iteration and the other thread is 

responsible for checking loop condition. In the 

speculative execution, the speculative thread guesses 

the result to execute the next iteration.According to 

our experimental results that are presented show that 

the speculative execution has better performance than 

the non-speculative execution no matter we use or do 

not I-structure memory mechanism. 

We have used few benchmarks to show that the 

speculative execution is an efficient way of 

instruction-level parallelism in the multithreaded 

scheduled dataflow architecture. Not only using 

multithread improves performance of a program but 

enhance more than the average program performance 

by using speculative execution. 
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