
Speculative Execution of a

Non-Blocking Multithreaded Architecture

Joseph M. Arul, Tsozen Yeh and HsuanYu Chen
Fu Jen Catholic University, Hsin Chuang 242, Taipei, Taiwan, R.O.C.

{arul,yeh,allen94 @csie.fju.edu.tw}

Abstract

In the modern architectures, if we want to

increase the processor performance, we need to

increase the ILP. TLP has been complemented to ILP

in multithreaded architectures. In this paper, we

present an evaluation of modern processor that

decouples memory accesses to alleviate the gap, uses

a non-blocking multithreaded together with the

dataflow paradigm. We provide both clock cycles per

instruction (CPI) and instructions per clock cycle

(IPC) evaluation of a multithreaded architecture by

using speculative execution. The existing architecture

has been evaluated previously and shown that it has

outperformed MIPS like architectures. In this

particular study, we try to implement speculative

execution of multithread on this unique architecture.

Some of the benchmarks we used include I-structure

that is unique to dataflow architecture and other

benchmarks are without I-structure. All the

benchmarks have shown speedup of about 1.3. In a

speculative execution, it divides the thread

aggressively and the mutual exclusion and

dependence are guaranteed to be parallel. Thus it can

increase the performance of any program with high

probability. We have used different architectural

simulators to prove the existing performance

improvement of speculative execution.

1. Introduction

In the past decade, microprocessors have been

improving their performance at a rate of 50-60% per

year. It was mainly due to increase in clock rates and

improvement in compiler technology and

improvement in instruction throughput (IPC).

Achieving this performance improvement in the future

would be a tremendous challenge, since it is already

facing technology-driven limitations. The researchers

may not be able to sustain clock speed improvements

with all the existing technologies on a single core.

Due to this fact, there has been increasing interest in

architecture concurrent processing by dual-core,

multi-core with a support of hyper-threading

technology.

Switching to multi-core or Chip-multiprocessors

(CMP) systems need to be complemented to achieve

higher levels of performance techniques, such as

out-of-order execution, branch and value prediction

and speculative instruction execution. Some computer

architects have advocated a paradigm shift from high

performance from high throughput using distributed

components or dual-core. With this paradigm comes a

renewed interest in multithreaded architecture. In the

future, computer architect would focus on

multithreaded architecture as opposed to single

threaded architecture. In our research, we would like

to present the speculative execution method and the

results of the usage of speculative execution on a

non-blocking multithreaded architecture. This

architecture is unique, because it combines the

advantages of control flow and dataflow system. This

multithreaded scheduled dataflow (SDF) has been

researched for a long time [1-4].

In the past, many have discontinued their

research in dataflow architecture due to the complex

hardware for communicating operands among

instructions. In our architecture we still keep the

instruction as dataflow model and the synchronization

at the thread level using control-flow semantics. The

detailed architecture will be presented in Section 4.

The speculative execution is an important

method of Instruction Level Parallelism (ILP). In this

research, we try to use the speculative execution in

SDF architecture and explain how we implemented

the speculative execution. We not only present the

speculative execution of the SDF architecture but also

the experiment results using few benchmarks on SDF.

Multithreading paradigm has been included in

modern CPUs with the emergence of hyper-threading.

Multithreaded architecture allows performance design

tradeoffs that may not be available in single threaded

machine. Most of the computers used are von

Neumann architecture or control flow architecture.

The speculative execution is also researched in control

flow architecture. Hence, we try to use speculative

execution in a non-blocking multithreaded

architecture and observe the performance

improvement over non-speculative execution. The

main difference is that the control flow programs are

partitioned into many procedures and executed based

on the program counter, but the dataflow program has

to be executed based on data driven and divided into

many non-blocking threads in our SDF architecture.

We extend the original thread, which is a

non-blocking thread to support speculative thread

level parallelism. How to run the loop iteration by

non-blocking thread is a main problem since in the

iterative processing, the execution must encounter a

series of branch prediction condition. By using

speculative execution we try to create many blocking

threads and compare with the non-speculative

execution. We will see how the data flows in many

speculative threads of SDF architecture. However, in

these architectures we need to extend few new

instructions to support the speculative execution. No

matter control flow or dataflow scheme they all need

additional instructions and registers for speculative

execution.

Here, we have used two different simulators with

the same base engine for non-speculative and

speculative SDF architecture in order to observe the

number of instructions and clock cycles. Then, we

evaluate the CPI (Clock cycles Per Instruction) and

IPC (Instructions per Clock cycle). After running few

benchmarks, each benchmarks show significant

improvement of speculative execution over

non-speculative execution.

The reminder of this paper is organized as

follows. Section 2 presents the background about

instruction level parallelism and related research on

speculative execution for many fields. Section 3

introduces the concept and purpose of speculation in

detail. Section 4 proposes the speculative execution in

SDF architecture and compare with the

non-speculative execution in SDF architecture. The

experimental results of these two different schemes of

execution in SDF architecture and its comparison

using different applications will be presented in

Section 5. Section 6 draws the conclusions by

observing these two executed schemes.

2. Background and Related Research

In this Section, we will present an overview of all

the related researches for the SDF architecture and

speculative execution.

2.1 Background

Today, parallel systems apply to accelerate

processor execution performance. In order to generate

more efficient parallel language, excellent compilers

need to produce optimizing scheduled assembly code.

However, with a sequential application, the compiler

is difficult to extract parallelism due to some of the

limitations as follow:

 sequential program is hard to divide

 many dependencies will occur in pipeline stage

 need good algorithm for branch prediction

 must detect which instructions must be

rearranged

In this situation, the speculation is an efficient

approach that reorders instructions, moving a load

instruction across a store instruction or an instruction

across a conditional jump (i.e. branch). Sometimes

speculative parallelism also called thread-level

speculation (TLS) that assumes system can execute

multi-loop level parallelism optimistically. It must be

divided by converting thread-level parallelism (TLP)

into instruction-level parallelism. Simultaneous

multithreading (SMT) is that modern multiple issue

processors often have more functional unit parallelism

available than a single thread that can effectively use.

In the SMT case, the thread-level parallelism and

instruction-level parallelism are exploited

simultaneously with multiple threads using the issue

slots in a single clock cycle.

2.2 Related Research

Speculative parallelization is introduced in [6].

There are two topics that are introduced:

compiler-based automatic parallelization and

speculative parallelization. Most compilers focus on

loop level parallelism and how to execute on

different loop iterations simultaneously. Hence, to

develop a parallel algorithm for the compiler is the

major concept. The main advantage of speculative

parallelization is that it can automatically parallelize

loop of sequential program and does not need to

know the dependence at compile time.

The compiler that can support for dynamic

speculative pre-execution has been proposed in [7].

Various forms of speculative pre-execution have been

developed, including hardware-based and

software-based approaches. The hardware-based

requires a complex implementation and lacks global

information such as data flow and control flow. The

other approach cannot deal with dynamic events and

imposes additional software overhead. In this research,

they enhance novel compiler to support for the

dynamic pre-execution of a pre-fetching thread which

contains the future probable cache miss instructions

that can run on the spare hardware context for data

pre-fetching.

The data speculative multithreaded architecture

is mentioned in [8]. Their research presents a novel

processor for micro-architectures, called Data

Speculative Multithreaded Architecture (DaSM) that

relieves three of the most important bottlenecks (data

dependencies, a relatively small instruction window,

and a limited fetch bandwidth respectively) of

superscalar processor. DaSM does not modify the

ordinary programs compiled for a superscalar

processor implementation. Their processor

implements an effective large instruction window that

is made up of several non-adjacent small windows.

Each small window is built using the conventional

control speculation approach whereas the creation of a

new window is based on speculating on highly

predictable branches. Their research is the

combination of the data speculation and multiple

threads of control in a promising alternative to relieve

the most critical bottlenecks of current superscalar

microprocessors.

 Some researchers also have exploited the effect

of speculative execution on cache performance [9].

The ideal method for examining the cache

performance of a speculative processor is to generate

memory reference traces with a full execution

simulator and use them as input to a cache simulator.

The main result of the study is that deep speculation

causes a significant increase by usually less than 15%.

In fact, by calculating the traffic ratio they found that

cache efficiency actually increases as speculation

increase.

By using speculative computation and

parallelizing techniques to improve scheduling of

control-based design is presented in [10]. They

improve the already proposed ILP scheduling

approaches by extending the case of speculative

computation. This means that the standard techniques

for high-level synthesis can be considered obsolete in

certain number of new designs. To deal with this

problem, the effectiveness of speculative code is

transformed into mixed control and data flow design

to reduce the length of the result schedules.

In the next chapter, we will present in detail

about speculative execution in computer architecture

of this particular research. How to apply speculative

execution, pipeline execution and instruction set

architecture on Scheduled Dataflow architecture will

be presented in section 4.

3. Speculative Execution

In any program execution, there are part of the

program that which should be executed, other part of

the program which should not be executed and finally

there are statements that cannot be proven to be in

either of the two above mentioned. Speculative

execution is that which part of the program cannot be

proven either certainly to be run or not to be run.

The speculative execution is that part of the code

to be run concurrently until it is proven that they are

not needed. Speculative execution means performance

optimization for the program by running certain part

of the program concurrently or in parallel in a

multithreaded architecture. It is useful by running

early, which consumes less time and space. In this

chapter we will discuss about all the speculative

concepts and how it is used in the modern

microprocessors.

3.1 The Speculative Execution and the
Modern Microprocessors

In modern pipelined microprocessors,

speculative execution is used to reduce the cost of

conditional branch instructions. Branch condition may

not be known until the branch is evaluated. Hence,

branch prediction technique is used which is to guess

the most likely to branch direction. If it is proven

wrong, the executed part of the code is discarded.

Those discarded instructions consume CPU cycles and

power consumption in an embedded systems or laptop

computers. Definitely for the miss-predicted branches

there will be penalty. Modern microprocessors have

conditional move instructions. These instructions

move data if the condition is met. In this situation it

eliminates branching.

The speculative execution means early execution

and is often cheaper because the value needed for the

computation or execution is brought in before. When a

program starts executing an array of 10,000 we can

think of bringing the data early knowing that the

program would need all the data in an array. It can

also be said as prediction. In the case of prediction, we

try to predict what should be done and knowing what

should be done, we apply the early known direction.

We need to also design a strong prediction algorithm.

In the case of speculative execution no prediction is

made before hand. Eager evaluation is also a form of

speculative evaluation. What is an eager evaluation?

Figure 3-1 shows an example of eager evaluation.

x = (6 + 8) * (1+2^3)

printf(“%d”,x);

printf(“%d”,x+3);

Figure 3-1 Eager Evaluation

In the above situation, x can be evaluated early

and stored as 126. Thus, we can reduce the storage

and also print statement can be evaluated once instead

of twice. This form of speculative evaluation reduces

storage and number of calculations to one.

 The speculative execution approach in a modern

processor would exploit the increasing abundance of

spare processing cycles to execute ahead of time

certain instructions for applications that would

otherwise stall on disk I/O. When an application needs

some data and if that data may not be in memory, it

needs to be fetched from disk stalling the CPU.

Speculative execution approach uses these cycles to

fetch the data needed in the future rather than stalling

the CPU later on when similar situation arises.

Modern microprocessors use speculative

execution to decrease the clock cycle cost of

conditional jump instructions and more advanced

processors add the branch prediction for control

speculative execution.

If (i = = j) ; condition

then A = B + C ; statement 1

else D = E + F ; statement 2

Figure 3-2 A Code for Control Condition

Figure 3-2 shows an example of conditional

execution. In the above situation, if, then, and else are

the branch instructions. The condition i = = j will

decide which statement must be executed. An

advanced processor speculatively executes both the

statement1 and statement2 at the same time. Then,

discard one of the statements that does not need. The

other method is to ‘guess’ by using branch prediction

that only executes one statement that likely to result.

Sometimes, the processor must undo one statement if

the processor finds that executed the wrong statement.

The branch prediction schemes are usually

implemented by hardware.

The VLIW (Very Long Instruction Word) and

superscalar architecture are both static and dynamic

technique for speculation. In a VLIW, the compiler

wants to target a wide-issue processor so that the

compiler would be necessary to develop a region

scheduling technique by speculation such as trace

scheduling. A superscalar processor executes one or

more instructions that can issue in a single pipeline

stage by using speculative execution to pre-fetching

multiple instructions simultaneously. This processor

still requires that the compiler to schedule instruction.

Hence, the speculative execution is an efficient way of

instruction scheduling for VLIW and superscalar

architecture. No matter in VLIW or superscalar, the

purpose of execution is to decrease the CPI (Clock

cycles Per Instruction) and increase the IPC

(Instructions Per clock Cycle) by using speculative

execution.

3.2 Speculative Execution on Multithreaded
Processors

A dual core or multi-core microprocessor

implements multiprocessing in a single physical

package. The multithreading paradigm complements

the multi-core to exploit instruction level parallelism.

The goal of multithreading hardware support is to

allow quick switching between a blocked thread and

another thread ready to run. Speculation at this level

in a multithreaded multi-core processor can overcome

the limitations in dividing a single program into

multiple threads. Thus, it can enhance performance

through parallelization. A speculatively multithreaded

multi-core processor can perform parallel execution of

a conventional sequential program. If we use a

non-speculative multithreaded program, it

conservatively divides the program and its mutual

independence and execution can be only guaranteed.

With a speculative execution there would be a high

probability of execution.

According to Sohi and Roth, where it is control

driven or data driven, speculation can aggressively

divide the program into multiple threads that can

guarantee high probability of execution in a

multithreaded processor [12]. The speculative

multithreading model considers each program region

into a separate thread that guarantees high degree of

parallelism, whether it is control driven or data driven.

3.2.1 Non-speculative Control-driven VS.
Speculative Control-driven

The programs are divided into control-driven

threads via control flow boundaries. In control-driven

multithreading, the thread executes the contiguous

segments and reconstructs the sequential execution by

dividing the dynamic instructions. Based on this

situation, we have to find the division point in order to

minimize inter-thread data dependencies.

In non-speculative control-driven multithreading,

it must guarantee two special scenarios. There are

execution-certainty and data-integrity of threads. In

fact, the thread cannot be undone. In order to achieve

execution-certainty and maximize concurrency, the

non-speculative control-driven thread can only be

forked for execution. The data-integrity must be

noticed when the data are shared among threads. It

means the thread accessing to memory location with

other threads must be synchronized. These situations

and dividing a program into non-speculative

control-driven threads are relied on the programmer

and compiler. The programmer must understand

clearly the parallel algorithm for data-sharing and

minimizing synchronization among different

control-driven threads.

In the above problems, it can be solved by using

speculation. In speculative control-driven

multithreading, the threads reconstruct the correct

total order of memory operations. In general, these

works can be detected and recovered from inter-thread

memory ordering violations for hardware support in

speculative control-driven threads. With such support,

the hardware can buffer or undo an entire

control-driven thread, and change its architected state.

The threads cannot be guaranteed at their final

usefulness when the threads are spawned. Hence, the

usefulness likelihood is high and the parallelism

characteristics are more important.

3.2.2 Non-speculative Data-driven VS.
Speculative Data-driven

The other model is dividing programs into

data-driven multithreads via dataflow boundaries. The

creation or execution of the data-driven thread is

relied on loading data. In other words, the data-driven

threads only need the inputs to trigger their execution.

Sometimes, a data-driven thread is triggered by

receiving previous data-driven thread and then sends

the results to a next data-driven thread. In general,

converting the imperative code to data-driven code

can only be constructed for code written in

data-driven language. The non-speculative data-driven

threads have two major problems. First, we must

ensure the programs can be divided into data-driven

multithreads. Second, the programmer usually creates

the sequential semantics so the resulting presentation

will break for imperative programs.

The speculation is also to solve these problems.

The data-driven threads usually need the additional

assisted thread when run ahead or pre-execute. Hence,

the purpose of speculation is to reduce the additional

assisted thread in speculative data-driven threads. The

data-driven multithread will be constructed via

dataflow information, and spawned to pre-execute at

some instructions that might cause problem in the

future. It has the option of using the result directly or

repeating the execution.

3.3 Speculative Execution on a Non-blocking
Multithreaded Architecture

The gap between processing speeds and disk

access time has been increasing every year. Memory

sizes have been increasing rapidly, so too the

application data requirements. We use a non-blocking

multithreaded architecture and a decoupled

architecture where a synchronization processor, which

fetches the data from memory, and the execution

processor execute the operands that are stored in the

registers, are used to build the gap.

Instead of stalling Execution Processor (EP) for

slow memory while fetching, Synchronization (SP) is

used to fetch the data from memory. We do

speculative execution by exploiting the knowledge

and information that is available. In this approach we

pre-fetch for virtual memory accesses as well as

explicit I/O calls, enabling it to provide the benefit

regardless of the I/O access methods used in any

applications. Here we use the mechanism to estimate

the impact of memory use by speculative execution on

SDF system performance, and thereby controlling

speculative execution when memory resources are not

abundant.

In our research, we create the speculative thread

differently from the normal thread. We also extend the

instructions for speculative execution on SDF

architecture. In general, in the loop iteration that

usually uses the value from previous loop iteration.

Due to this reason, the speculative execution on SDF

architecture executes the speculative thread to ‘guess’

the result that will be used for the next iteration. The

benefit of this is, it does not need additional threads.

The other factor that affects the execution time is

the I-structure mechanism on speculative execution of

SDF architecture. In modern architectures, arrays are

used to store data. The feature of I-structure

mechanism is that write once, read many times. Hence,

here we use I-structure instead of array. We offer a

new instruction and algorithm for pre-fetching from

I-structure memory. In other words, we need to

calculate the distance for pre-fetch in order to

pre-execute on speculative execution. For example, if

the input value is ‘N’ for iteration times, the distance

is N/2. When input value is 10, the distance is 5 for

pre-fetch. While the program is fetching data from

position 2 of I-structure, it will pre-fetch data from

position 7 of I-structure. In section 4, we will discuss

in more detail about this extension of instruction set,

speculative thread structure and iteration in

speculative execution of SDF architecture.

In section 5, we present the algorithm to

calculate the distance for pre-fetching I-structure

memory and various other benchmarks results.

4. Non-blocking Multithreaded
Architecture

In this section we will present the non-blocking

multithreaded architecture that we have used for our

implementation and experimentation. We will also

explain how we implemented a speculative and

non-speculative execution.

4.1 Scheduled Data Flow (SDF) Architecture
Overview

Most of the computers used are von Neumann

model where the program executes using control flow

architecture. In the control flow scheme, a program

will be partitioned into many procedures (or functions,

modules, methods, etc.) Programs are executed based

on the program counter. But in SDF architecture, a

program has to be divided into many non-blocking

threads. Each thread has several code blocks and is

divided into three portions, which are pre-load,

execute and post-store sequentially.

4.1.1 Non-blocking Thread Structure

The SDF architecture uses two processors, which

are Synchronization Processor (SP) and Execution

Processor (EP) to follow the precedent decoupled

architecture’s AP and EP [14]. Pre-load and Post-store

portions of a thread can be executed by

Synchronization Processor (SP). Execute portion of a

thread can be executed by Execution Processor (EP).

Figure 4-1 shows this structure. In other words, SDF

architecture has three main components:

Synchronization Processor (SP), Execution Processor

(EP) and thread schedule unit. Each thread is

represented by four continuations: FP, IP, RS, and SC.

FP is the Frame Pointer that is responsible for

inputting and storing values by a thread. IP means the

Instruction Pointer, which points to the thread code.

RS represents a dynamically allocated register context

that is a Register Set. SC is Synchronization Count

that is the number of inputs needed for a thread before

it can be scheduled for execution.

Figure 4-1 Thread Structure for SDF Architecture

When a thread receives its values, the

synchronization count will be decremented until the

count value becomes zero and the thread is scheduled

on SP. The frame memory is allocated simultaneously

while a thread is being created. The data needed for

the thread is stored into the related frame memory. SP

will pre-load data from frame memory into the

thread’s register context. This is the role of SP to

execute thread’s pre-load portion. SP is also

responsible for a thread’s post-store portion. When a

thread terminates its job, if the result is needed for

other threads, they will store the result into the related

frame memory for other threads to load its data. The

I/O instructions such as INPUT (read the value from

the device) or OUTPUT (write the result to the device)

is also done by SP in pre-loading portion (or

post-store portion). The other processor is EP that is

responsible for threads execution portion. The EP not

only includes the arithmetic instructions (e.g. ADD,

MUL) but also is responsible for frame allocation by

using instruction such as FALLOC (allocates and

initializes a frame memory for a thread). The SDF

code uses RR instructions to store a pair of

consecutive registers. For instance, ADD RR2 means

that does ADD operation using registers R2 and R3.
The compiler for SDF should divide any high level

program into many threads. Since the compiler is not

ready at the moment, we use assembly language to

evaluate speculative and non-speculative threads.

4.1.2 Execution and Synchronization Pipeline

First, we describe the execution pipeline that has

four units: instruction fetch, decode, execute, and

write back (see Figure 4-2). Instruction fetch unit is

similar to a normal fetch unit that behaves like

program counter that points to the next instruction.

Decode and register fetch units obtain a pair of

registers that contain two source operands for the

instruction. Execute unit executes the instruction and

sends the results to write-back unit along with the

destination register numbers. Write back unit writes

two values to the register file.

Figure 4-2 Execution Pipeline (EP)

Second, we continue to describe the other

pipeline that is synchronization pipeline. The

synchronization pipeline has five stages: instruction

fetch, decode, memory access, effective address, and

write-back (see Figure 4-3). As mentioned earlier, the

synchronization pipeline handles pre-load and

post-store instructions.

Figure 4-3 Synchronization Pipeline (SP)

The instruction fetch unit retrieves an instruction

belonging to the current thread using program counter.

The decode unit decodes the instruction and fetches

registers. The effective address unit computes

addresses for LOAD and STORE instructions. LOAD

and STORE instructions only reference the frame

memories of threads by using a Frame Pointer (FP)

and an offset into the frames; both of which are

contained in registers. The memory access unit

completes LOAD and STORE instructions. Pursuant

to a post-store, the synchronization count of a thread

is decremented. The write-back unit completes LOAD

(pre-load) and IFETCH instructions by storing the

values in appropriate registers.

4.2 Non-speculative Execution in SDF
Architecture

In this section, we will describe the original

execution of SDF architecture and how to run the loop

iteration by non-blocking threads. Figure 4-4 presents

the original method for loop iteration execution. In the

original method that is a non-speculative execution

that needs two threads to procure single loop iteration.

One thread’s function does the operation of loop

iteration; the other thread is responsible to check loop

condition.

Figure 4-4 A Non-speculative Iteration Execution

We use the “FALLOC” instruction to allocate the

frame memory for the specified thread checking

condition. The thread uses the frame pointer and the

offset to load or store data from frame memory. When

the thread sends the data to the other thread, we use

the “STORE” instruction to pass the data via frame

memory. If the thread, which is responsible for

checking the loop, decides whether the condition is

valid, it will free the frame memory for loop. So we

always use the “FFREE” instruction to release the

thread and the frame memory. This is how the

non-speculative thread execution is performed.

4.3 Speculative Execution in SDF Architecture

In this section, we will describe the speculative

execution using SDF architecture and how to run the

loop iteration by speculative threads.

4.3.1 Extension of Instruction Set and the
Thread Structure

In order to speculate a program by using SDF

code, we must add few new instructions. Speculative

thread also must be modified differently from the

non-speculative thread. Figure 4-5 shows the new

thread structure for speculative mechanism, which we

can compare with Figure 4-1.

Figure 4-5 Speculative Thread

Speculative thread also consists of three parts

that are ‘pre-load’, ‘execute’ and ‘post-store’. In the

SP phase, the speculative thread’s function is same as

the previous thread and it not only can fetch data from

I-structure memory but also use ‘SREAD’ (by

calculating the distance for speculative read)

instruction to pre-fetch data from I-structure memory.

In the ‘execution’ part, it can speculate an execution.

By allocating a frame memory for speculative thread,

it uses ‘SFALLOC’ (associate a speculative frame to a

code-block) instruction to allocate speculative frame

memory. We can use PUT (put value into any register)

instruction instead of PUTR1 (put immediate data into

register R1) instruction in order to solve the

dependence.

4.3.2 Iteration in Speculative Execution

In the iterative processing, the execution must

encounter a series of branch prediction condition. If

we use branch instruction in EP phase, it will predict

the result and use ‘FORKEP’ (Schedule the execution

of code on Execution Processor) instruction executing

EP again. The speculative thread does not wait to

execute and choose in which SP must be executed.

The benefit of this mechanism is that we don’t need

the other threads to check for the branching condition.

Figure 4-6 A Speculative Iteration Execution

Figure 4-6 presents this method where we can

compare with Figure 4-4. In the original method that

needs the other thread that is responsible to check the

loop condition. But in the loop iteration that usually

uses the result from previous loop iteration. According

to this attribute, the speculative thread ‘guess’ the

result that will be used for the next iteration. The

speculative thread allocates the result into the

speculative frame memory for the next speculative

thread pre-load. In the loop iteration, the thread

usually will be executed early so that pre-execute can

reduce the execution time.

Two flow paths are decided while speculative

frame memory stores the data from speculative thread.

One path is executed by ‘predict correct’ situation,

then speculative thread is continued to execute. The

other path is executed by ‘predict incorrect’ situation,

which means the other loop condition that occurs must

exit the loop iteration, then sends the data to other

threads and free the current speculative thread. The

branch prediction result will be known in EP phase of

speculative thread. The benefit of this is that it does

not need additional frame memory and the threads to

check it.

In the next chapter, we will present seven

programs that are used to implement the comparisons

of these two schemes. According to the experimental

results, we can note the better performance

improvement by using the speculative execution in

SDF.

5. Speculative VS. Non-speculative
Benchmark Evaluation

5.1 Benchmarks used to Experiment

In this chapter we will present the experiment

results. Some benchmarks are without using

I-structure memory and other benchmarks are using

I-structure memory. Simple benchmark such as

running a loop where the program is entered ‘n’ and it

adds 1 to n. Then the other benchmarks such as

factorial program, Fibonacci program and prime

number program are also presented. Using I-structure

programs are Loop_IFETCH program which fetches

data from the I-structure memory; matrix

multiplication and linear search (add the data to be

searched are stored in the I-structure). All the

programs are written and tested by using speculative

and non-speculative scheme. For these experiments

we used two different simulators to estimate

program’s execution clock cycles and instructions in

order to calculate CPI (Clock cycles per Instruction)

and IPC (Instructions per Clock). One was an SDF

simulator that uses a speculative execution. The other

simulator uses a non-speculative execution.

The environment variables are set for the frame

allocation policy, maximum number of frames, frame

size and maximum number of register sets

respectively as follows. (see Figure 5-1). The

computer system and architecture lab of Fu Jen

Catholic University department of Computer Science

& Information Engineering maintains these

simulators.

Operations Description

-fpolicy cq | st | sh

Set frame allocation policy

(cq=circular queue, st=stack,

sh=stackh)

-frames

NO_OF_FRAMES
Set maximum number of frames

-fsize WORDS Set frame size

-regsets

NO_OF_REGSETS

Set maximum number of register

sets

Operations Setting

FRAME SIZE = 256

FRAMES PER PROCESSOR = 256

REGISTER SETS PER PROCESSOR = 64

FRAME ALLOCATION POLICY = 0/1

Figure 5-1 Environment Variables Setting

In the following paragraph we will present the

method of execution for various benchmarks and

results are presented. We will also present the IPC and

the CPI for these benchmarks.

5.2 Programs without I-structure Usage

In this and the next section, we will present the

experimental results that use seven different typical

programs. These program comparison include

summation, factorial calculation, Fibonacci and prime

number. Table 5-1 presents the results of a simple

summation using a single loop. The program uses

different data size such as 1000 to 5000. The first

column shows the data sizes from 1000 to 5000.

Second column presents clock cycles for various data

sizes. In the third column we present the total number

of instructions used for various data size of the

program. The fourth and the fifth column present the

CPI and the IPC for non-speculative execution.

Table 5-1 Summation Program

Non-speculative

Data size
Clock

Cycles
Instructions CPI IPC

1000 156857 75023 2.091 0.478

2000 313641 150023 2.091 0.478

3000 470443 225023 2.091 0.478

4000 627227 300023 2.091 0.478

5000 784011 375023 2.091 0.478

Speculative

Data size
Clock

Cycles
Instructions CPI IPC

1000 36094 27037 1.335 0.749

2000 72094 54037 1.334 0.750

3000 108094 81037 1.334 0.750

4000 144094 108037 1.334 0.750

5000 180094 135037 1.334 0.750

The CPI for the non-speculative execution is

consistent for various data size, which is 2.091. The

IPC is also consistent for various data size, which is

0.478. Similarly, the same program was written for

speculative execution. The result decreases the CPI

from 2.091 to 1.334 and increases the IPC from 0.478

to 0.749. The speculative and non-speculative

execution for the sake of simplicity, we keep the cycle

count as 1 cycle for all the instructions irrespective of

various opcodes. In a real architecture environment

the cycles may very depending on the type of opcodes.

In some environment it could take 50 to 100 cycles for

opcodes such as multiply instructions.

Table 5-2 shows the results of factorial program.

The factorial program uses a single loop and also

invokes computational data sizes from 5 to 25 for

speculative execution and non-speculative execution.

We use a non-recursive version of the factorial

program calculation.

Table 5-2 Factorial Calculation Program

Non-speculative

Data size
Clock

Cycles
Instructions CPI IPC

5 840 398 2.111 0.474

10 1625 773 2.102 0.476

15 2410 1148 2.099 0.476

20 3195 1523 2.098 0.477

25 3980 1898 2.097 0.477

Speculative

Data size
Clock

Cycles
Instructions CPI IPC

5 273 171 1.596 0.626

10 453 306 1.480 0.675

15 633 441 1.435 0.697

20 813 576 1.411 0.708

25 993 711 1.397 0.716

Table 5-2 presents non-speculative execution,

where we can find the CPI is about 2.1 and the IPC is

about 0.477. It shows not only very significant

improvement for various data sizes but also great

improvement in clock cycles. In speculative execution,

as the previous program we transfer speculative

instructions to execute in this program. We can

observe that the CPI and IPC here too. The CPI is

about 1.4 and the IPC is about 0.7. It shows more

significant improvement for non-speculative

execution.

Table 5-3 Fibonacci Program

Non-speculative

Data size
Clock

Cycles
Instructions CPI IPC

5 520 274 1.898 0.527

15 1660 894 1.857 0.539

25 2800 1514 1.849 0.541

35 3940 2134 1.846 0.542

45 5080 2754 1.845 0.542

Speculative

Data size
Clock

Cycles
Instructions CPI IPC

5 222 138 1.609 0.622

15 622 448 1.388 0.720

25 1022 758 1.348 0.742

35 1422 1068 1.331 0.751

45 1822 1378 1.322 0.756

In our experimental Fibonacci program, we write

Fibonacci assembly program by using non-recursive

method because recursive method will use additional

registers to cause not enough register situation, but

also frame memory. In dataflow architecture the

recursive programs may not be suitable. In a recursive

program one thread spawn another thread and so on.

Thus, there will not be many parallelism to exploit

implicit parallelism by having multithreaded

architecture. Table 5-3 presents the results of this

program. The CPI is about 1.85 and the IPC is roughly

about 0.54 in non-speculative execution. But in

speculative execution, the CPI is reduced from 1.85 to

1.34 and the IPC increased from 0.54 to 0.75. We can

see the similar result for the factorial program too.

Table 5-4 presents the results for prime number

program, which shows IPC over 1. This program is a

simple prime number search program, where the user

enters n, and the program finds all the prime number

between 1 and n. The CPI is about 1.31 and the IPC is

about 0.76 in non-speculative execution. The values

are stable even for different data sizes. In speculative

execution, the CPI is 0.807 and the IPC is 1.239 for

different data sizes. Table 5-4 shows similarly for

various data sizes, the IPC values we can see the

improvement.

Table 5-4 Prime Number Program

Non-speculative

Data size
Clock

Cycles
Instructions CPI IPC

100 81361 61594 1.321 0.757

200 303627 231027 1.314 0.761

300 588279 446995 1.316 0.760

400 976091 741663 1.316 0.760

500 1498501 1138104 1.317 0.759

Speculative

Data size
Clock

Cycles
Instructions CPI IPC

100 28087 34518 0.814 1.229

200 100871 125051 0.807 1.240

300 193535 239707 0.807 1.239

400 318973 395287 0.807 1.239

500 487223 603804 0.807 1.239

5.3 Programs with I-Structure Usage

The I-structure is the feature of data flow

architecture to fetch/store data and it has the

characteristic that write once, read many times.

I-structure affects the execution time where the data is

read from memory and stores the data for the first

time in memory. Any memory read can be done many

times, but write could lead to further data hazards.

Since I-structure usually causes data hazard, it can be

a bottleneck in the dataflow architectures. The

possible data hazards are RAW (read after write),

WAW (write after write) and WAR (write after read).

Note that RAR (read after read) case is not a hazard.

In the following, three programs use I-structure for

these comparisons are Loop_IFETCH, matrix

multiplication and sequential search algorithm

respectively. In a common architecture we use arrays

as a memory to store data. Here we use I-structure

instead of array. Since this architecture uses a

dataflow like instruction execution we use I-structure

instead of an array.

First is the Loop_IFETCH program. This

program uses a single loop and I-structure to store the

data. Actually, the Loop_IFETCH is designed

program that’s function produces a series of fetching

notion at the same memory location. It will cause

consecutive RAW and WAR. In other words, the

Loop_IFETCH program is similar to summation

program. Initially we write all the data in I-structure

then read and operate the data from I-structure

memory. Following this model we also use

pre-fetching mechanism by using SREAD instruction.

Hence, SREAD is introduced as a speculative read

operation. By using this method we need to calculate

the distance for pre-fetch. In this case, the distance is

calculated by dividing iteration number of times. For

example, if we input “N” for iteration times, the

distance is N/2. When input value is 10, the distance

value is 5 for pre-fetch. While the program is fetching

data from position 1 of I-structure, it will pre-fetch

data from position 6 of I-structure. Figure 5-2 presents

this concept by using high-level language.

Add 1 to N by using speculative

input n and only run n/2 rounds

 for(i=1;i<n/2;i++)

 {

 a=hash[f[i]];

 a=a + hash[f[i+n/2]];

 hash[0]+=a;

 }

Figure 5-2 Loop_IFETCH Program Described

Using C language

Table 5-5 Summation Program Using I-Fetch

Non-speculative

Data size
Clock

Cycles
Instructions CPI IPC

200 16094 12026 1.338 0.747

400 32094 24026 1.336 0.749

600 48094 36026 1.335 0.749

800 64094 48026 1.335 0.749

1000 80094 60026 1.334 0.749

Speculative

Data size
Clock

Cycles
Instructions CPI IPC

200 3764 3607 1.044 0.958

400 7464 7207 1.036 0.966

600 11164 10807 1.033 0.968

800 14864 14407 1.032 0.969

1000 18564 18007 1.031 0.970

From table 5-5 we can observe that the CPI is

about 1.33 and the IPC is about 0.479 for

non-speculative execution. Whereas the speculative

execution, the CPI is about 1.03 and the IPC is about

0.96. No matter how much the data size is increased,

the execution is very stable in speculative or

non-speculative scheme. In spite of the high number

of fetches, the CPI is very low in speculative

execution. It again verifies that the speculative

execution mechanism presents an excellent paradigm

to obtain a better execution performance as compared

to non-speculative execution mechanism.

The second program is matrix multiplication.

Table 5-6 presents the results of running matrix

multiplication using different sizes of data. This

program uses three nested loops and also uses

I-structure applying speculative and non-speculative

mechanisms. Matrix multiplication program performs

several calculation in the inner most loop.

A[] and B[] are stored in the I-structure memory.

Matrix multiplication needs an awful lot of calculation

for addition and multiplication and I-structure

simultaneously. In this program, we use two SREAD

instructions for pre-fetching. The distance is divided

in the third loop. Figure 5-3 shows this method in the

high level language as well as in a simple pseudo code

to apply speculative execution.

Non-speculative Execution

Program

for(i=0;i<N;i++)

 for(j=0;j<N;j++)

 for(k=0;k<N;k++)

 {

 C[i][j] += A[i][k] * B[k][j];

 }

Speculative Execution

Program

for(i=0;i<N;i++)

for(j=0;j<N;j++)

for(k=0;k<N/2;k++)

{

a = A[i][k] * B[k][j];

b= A[i][k+D] * B[k+D][j];

C[i][j] += a+b;

}

Example: 4 x 4

C[1][1] + = A[1][0] x B[0][1]

C[1][1] + = A[1][1] x B[1][1]

C[1][1] + = A[1][2] x B[2][1]

C[1][1] + = A[1][3] x B[3][1]

Example: 4 x 4

C[1][1] + = A[1][0] x B[0][1]

+ A[1][2] x B[2][1]

C[1][1] + = A[1][1] x B[1][1]

 + A[1][3] x B[3][1]

Figure 5-3 Matrix Multiplication Described Using

C language

The matrix multiplication program experimental

results are similar to the first program, summation

program, where the SDF program has to access

I-structure memory. Table 5-6 presents the CPI, which

is about 1.6, and the IPC is about 1.2 for

non-speculative execution. This shows the situation

where the value is very stable for matrix

multiplication program. In speculative execution, the

CPI is about 1.2 and the IPC is about 0.8, these values

are also similar for matrix multiplication program.

After running for various data sizes from 2 * 2 to 32 *

32, the performance improvement is about 1.2 in all

cases.

Table 5-6 Matrix Multiplication

Non-speculative

Data size
Clock

Cycles
Instructions CPI IPC

2x2 2283 1383 1.651 0.606

4x4 8587 5237 1.640 0.610

8x8 32673 20409 1.601 0.625

16x16 127423 80609 1.581 0.633

32x32 518859 320433 1.619 0.618

Speculative

Data size
Clock

Cycles
Instructions CPI IPC

2x2 984 755 1.303 0.767

4x4 3324 2643 1.258 0.795

8x8 12372 9947 1.244 0.804

16x16 47940 38667 1.240 0.807

32x32 191376 152555 1.254 0.797

Final program is a linear search. Linear search

program also uses a single loop and I-structure to

store the data. The process of searching data must be

considered for this program, like EQ or NE opcodes,

in order to execute correctly for the given program.

Because the speculative execution applies branch

prediction and dynamic scheduling method, process of

pipeline execution will reorder some instructions.

Table 5-7 Linear Search

Non-speculative

Data size
Clock

Cycles
Instructions CPI IPC

500 60998 32524 1.875 0.533

1000 121926 65024 1.875 0.533

1500 182854 97524 1.875 0.533

2000 243782 130024 1.875 0.533

2500 304710 162524 1.875 0.533

Speculative

Data size
Clock

Cycles
Instructions CPI IPC

500 16061 11513 1.395 0.717

1000 32061 23013 1.393 0.718

1500 48061 34513 1.393 0.718

2000 64061 46013 1.392 0.718

2500 80061 57513 1.392 0.718

Table 5-7 presents the results of linear search.

The CPI for the non-speculative execution is

consistent for various data sizes. The IPC is also

consistent for various data sizes, which are about

0.533. Similarly, the same program was written for

speculative execution. The CPI is 1.39 and the IPC is

0.718.

5.4 Analysis of the CPI Improvement
In this section, we extract the CPI from all the

experiment of program in order to understand the

execution performance clearly. Since the CPI is a

common measurement unit, many computer

architectures always use this method for presenting

the improvement between various architectures.

Table 5-8 Average CPI without I-structure

Non-speculative

Sum Factorial Fibonacci Prime Average

2.091 2.111 1.898 1.321 1.855

2.091 2.102 1.857 1.314 1.841

2.091 2.099 1.849 1.316 1.839

2.091 2.098 1.846 1.316 1.838

2.091 2.097 1.845 1.317 1.837

Speculative

Sum Factorial Fibonacci Prime Average

1.335 1.596 1.609 0.814 1.338

1.334 1.480 1.388 0.807 1.252

1.334 1.435 1.348 0.807 1.231

1.334 1.411 1.331 0.807 1.221

1.334 1.397 1.322 0.807 1.215

Average CPI without I-structure

0.000

0.500

1.000

1.500

2.000

2.500

1 2 3 4 5

C
P

I non-sp

sp

Figure 5-4 IPC Graph Using Table 5-8

Table 5-8 presents the average CPI without

I-structure usage. First column presents the CPI for

summation program, second column presents the

factorial program, third column presents Fibonacci

program, fourth column presents prime number

program, and final column shows the average for

non-speculative execution. The average CPI is about

1.8. For speculative execution part, the average CPI is

about 1.2 better than non-speculative execution.

Table 5-9 also presents the average CPI with

I-structure usage. First column presents summation

program, second column presents matrix

multiplication program, third column presents linear

search program, and the final column is average CPI

using non-speculative execution. The average CPI is

about 1.6. Using speculative execution part, the

average CPI is about 1.2 better than non-speculative

execution.

Table 5-9 Average CPI with I-structure

Non-speculative

IFETCH Matrix Search Average

1.338 1.651 1.875 1.621

1.336 1.640 1.875 1.617

1.335 1.601 1.875 1.604

1.335 1.581 1.875 1.597

1.334 1.619 1.875 1.609

Speculative

IFETCH Matrix Search Average

1.044 1.303 1.395 1.247

1.036 1.258 1.393 1.229

1.033 1.244 1.393 1.223

1.032 1.240 1.392 1.221

1.031 1.254 1.392 1.226

Average CPI with I-structure

0.000

0.500

1.000

1.500

2.000

2.500

1 2 3 4 5
C

P
I non-sp

sp

Figure 5-5. IPC Graph Using Table 5-9

According to our experimental results no matter

whether we use or not use I-structure mechanism, the

speculative execution has better performance than the

non-speculative execution. Speculative execution is a

form of prediction where it encounters a loop and the

fetching of data, it can assume that the data needed

can be fetched ahead of time and save many cycles.

As a result, the CPI as well as IPC is improved.

6. Conclusions

The main goal of this research is to provide a

qualitative evaluation of a unique non-blocking

multithreaded architecture that clearly decouples all

memory access from the execution pipeline. Even

though previously reported that this architecture

achieves scalable performance that is comparable to

simple scalar architecture in this research, we show

the speculative execution vs. non-speculative

execution of multithreaded architecture.

We can exploit ILP by using SP and EP

concurrently and TLP by using multithreading

technique simultaneously. The hardware used in SDF

is much simpler. It is also possible to build several

processors on a single chip to further speedup the

execution. There are several projects for implementing

multiple processors on the same chip as an effective

use of extra chip area.

 By using speculative execution of SDF

architecture it has better performance than

non-speculative execution of SDF architecture. We

can show that the speculation is a method that has

branch prediction in dynamic scheduling. The

speculative execution is a ‘guess’ behavior that wants

to reduce data hazard and control hazard stalls at the

same time. In other words, the purpose of a

speculative execution is that the branch could be

executed earlier for solving dependences and hazards.

In the original SDF implementation, the

non-speculative execution needs two threads to

procure single loop iteration. One thread does the

operation of loop iteration and the other thread is

responsible for checking loop condition. In the

speculative execution, the speculative thread guesses

the result to execute the next iteration.According to

our experimental results that are presented show that

the speculative execution has better performance than

the non-speculative execution no matter we use or do

not I-structure memory mechanism.

We have used few benchmarks to show that the

speculative execution is an efficient way of

instruction-level parallelism in the multithreaded

scheduled dataflow architecture. Not only using

multithread improves performance of a program but

enhance more than the average program performance

by using speculative execution.

Reference

[1] K.M. Kavi, H.S. Kim, and A.R. Hurson,

“Scheduled Dataflow Architecture: A Synchronous

Execution Paradigm for Dataflow,” IASTED J. and

Applications.Vol.21, no. 3, pp.114-124, Oct. 1999.

[2] K.M. Kavi, J.M. Arul and R.M. Giorgi, “Execution

and Cache Performance of the Scheduled Dataflow

Architecture,” J.Universal Computer Science, special

issue on multithreaded and chip multiprocessors, vol.

6, no.10, pp.948-967, Oct. 2000.

[3] K.M. Kavi, R.M. Giorgi, J.M. Arul, “Scheduled

Dataflow: Execution Paradigm, Architecture, and

Performance Evaluation,” IEEE Trans. On Computers,

Vol. 50, No. 8, pp.834-846, August 2001.

[4] J.M. Arul, Tsozeh Yeh, Chiacheng Hsu, Janjr Li,

“ An Efficient Way of Passing of Data in a

Multithreaded Scheduled Dataflow Architecture,”

Proc. 8th International Conference on

High-Performance Computing in Asia-Pacific Region,

pp.487-492, Dec. 2005.

[5] Huiyang Zhou, Chao-Ying Fu, Eric Rotenberg,

Thomas M. Conte,“A Study of Value Speculative

Execution and Misspeculation Recovery in

Superscalar Microprocessors,” Department of Electric

& Computer Engineering, North Carolina State

University, pp.--23.

[6] Arturo González-Escribano, Diego R. Llanos.

“Speculative Parallelization,” ISSN 0018-9162, IEEE

Press On Computer, vol. 39, no. 12, pp. 126-128,

December 2006.

[7] Won W. Ro, Jean-Luc Gaudiot, “Compiler Support

for Dynamic Speculative Pre-Execution,” Proceedings

of the Seventh Workshop on Interaction between

Compilers and Computer Architectures, p.14,

February 08-08, 2003.

[8] Marcuello, Pedro Antonio Gonzalez, “Data

Speculative Multithreaded Architecture,” 24th

Euromicro Conference Proceedings, IEEE 1998, vol.

1, pp. 321-324.

[9] Jim Pierce, Trevor N. Mudge,“The Effect of

Speculative Execution on Cache Performance,”

Proceedings of the 8th International Symposium on

Parallel Processing, p.172-179, April 01, 1994.

[10] Roberto Cordone, Fabrizio Ferrandi, Gianluca

Palermo, Marco Domenico Santambrogio, Donatella

Sciuto, “Using Speculative Computation and

Parallelizing Techniques to Improve Scheduling of

Control based Designs,” The 11th Asia and South

Pacific Design Automation Conference Technical

Program, IEEE 2006, pp 898-904.

[11] F. Chang and G. A. Gibson, “Automatic I/O Hint

Generation Through Speculative Execution,”

Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (OSDI), New

Orleans, LA, February 1999, pp. 1-14.

[12] G. Sohi and A. Roth, “ Speculative

Multithreaded Processors,＂ IEEE Computer 34, 4

(2001), 66-73.

[13] V. Krishnan and J. Torrellas,

“Chip-Multiprocessor Architecture with Speculative

Multithreading,＂IEEE Trans. Computers, vol. 48,

no.9, pp.886-880, Sept.1999.

[14] J.E SMITH, “Decoupled access/execute

computer architectures,” Proceedings of the 9th annual

symposium on Computer Architecture, p.112- 119,

April, 1982.

[15] Gonzales, J., and Gonzalez, A., “Speculative

Execution via Address Prediction and Data

Prefetching,” Proc. of International Conference on

Supercomputing 1997, ACM, NY, pp. 196-203 (1997).

[16] Pedro Marcuello , Jordi Tubella , Antonio

González, “Value prediction for speculative

multithreaded architectures,” Proceedings of the 32nd

annual ACM/IEEE international symposium on

Microarchitecture, p.230-236, November 16-18, 1999,

Haifa, Israel.

