
狀 步狀 步狀 步狀 步以投機 況為基礎的同 多線程架構前端策略以投機 況為基礎的同 多線程架構前端策略以投機 況為基礎的同 多線程架構前端策略以投機 況為基礎的同 多線程架構前端策略

Front-End Policy based on Speculation Condition for

Simultaneous Multithreading Architecture

陳沛源

大同大學資訊工程所

g9306015@ms2.ttu.edu.tw

謝忠健

大同大學資訊工程所

shieh@ttu.edu.tw

摘要摘要摘要摘要

夠對現代能 進行多重發送的超純量處理器而

夠言，指令提取單元是讓高效力的執行單元能 保

持全速運作的關鍵之一。用以評價指令提取單元的

數據不只有發送指令的速率還有投機執行的準度。

說也就是 一個好的指令提取單元要能在合理的時

內 擷脈時間 ，從正確的執行路徑上 取大量的指令。

步 狀在同 多線程架構的處理器上 況會有些許的不

同，因為在處理器中同時有多個活動中的程序。若

每 狀是能得知 個線程未來的投機執行 況，前端的

指令提取單元可以偏好具有高度可預測性執行路

產徑的執行緒，以避免誤入錯誤執行路徑時額外

生的資源及電力浪費。

步在本論文中，我們將焦點擺在改善同 多線

程處理器的前端執行單元。我們提出了一個輔助性

的結構稱作 Sequential Trace Table (STT) ，來

狀提供對各個執行緒投機執行 況的預先觀察。並利

狀用這些投機執行 況的資訊以輔助排定提取優先

權的策略。

關鍵詞關鍵詞關鍵詞關鍵詞 步：同 多線程架構、提取策略、投機執行。

Abstract

For modern wide-issue superscalar processors,

high performance instruction fetch unit is the key
component to keep the powerful execution engine

operating in full speed. The performance

measurement to evaluate a front-end mechanism

includes both the instruction delivery rate and

speculation accuracy. That means a good front-end

engine should be able to fetch and dispatch massive

instructions on the right execution path, in a

reasonable clock cycle time. Things may be a little

different in Simultaneous Multithreading (SMT)

architecture because there are multiple active

contexts inside the CPU. If we can extract some

information about future speculation conditions of

each thread, the front-end fetch engine can then

prefer threads with highly predictable execution path

to avoid resource or energy waste on mis-speculative

routes.

In this paper, we focus on improving the front-

end engine of SMT processor. We present a

supplementary structure called Sequential Trace

Table (STT) to provide a look-ahead into the future

speculating conditions of each thread, and use the

information to help improving fetch prioritizing

policies.

Key words: Simultaneous Multithreading

Architecture, Fetch policy, Speculative Execution.

1. INTRODUCTION

Benefiting from the improving of

semiconductor process, modern processor has much

design space for advanced microarchitectures. At a

high level view point, a modern high-performance

processor is composed of two processing engines: the

front-end processor and the execution core. The

front-end processor is responsible for fetching and

preparing (e.g., decoding, renaming, etc.) instructions

for execution. The execution core orchestrates the

execution of instructions and the retirement of their

register and memory results to non-speculative

storage. These two processing engines are decoupled

with internal instruction storages and/or reorder

structures, such as instruction queue, reorder buffer,

and reservation stations.

For the execution part, the focus is on how to

use the processor's resources effectively, by

exploiting parallelism in the instruction stream

provided by the front-end engine. Such efforts

include out-of-order issue, speculative issue, value

speculation, and Simultaneous Multithreading (SMT)

execution engine. For the front-end part, the more

and more powerful execution engine places further

1

demands on improving both speed of instruction

stream delivering and accuracy of execution path

selection. This kind of researches result in

sophisticated branch prediction schemas and fetch

policies.

Unfortunately, fetch units implemented in most

of the modern commercial microprocessors have

rigid restriction on the range of instructions they can

access in a single machine cycle:

1. The fetch unit can’t fetch across a taken branch.

That means the instructions fetched in one

cycle often belong to the same basic block.

2. The fetch unit can’t fetch across the boundary

of a cache line. A multi-port instruction cache

may help to mitigate this kind of limitation.

In this paper, we focus on improving the front-

end engine of SMT processor. We present a

supplementary structure called Sequential Trace

Table (STT) to provide a look-ahead into the future

speculating conditions of each thread, and use the

information to help branch prediction and fetch

prioritizing.

1.1 Simultaneous Multithreading

Multithreading in processor architectures is

similar in concept to Preemptive Multitasking in

operating systems but is implemented in a more fine-

grained level based on modern out-of-order

superscalar processors.

Simultaneous multithreading (SMT) is one of

the two main implementations of multithreading, the

other form being temporal multithreading. Figure 1.1

illustrates the characters of different kinds of

multithreading. In Temporal Multithreading, only one

thread of instructions can execute in any given

pipeline stage at a time. In Simultaneous

Multithreading, instructions from more than one

thread can be executing in any given pipeline stage at

a time. This is done without great changes to the

hardware structure of modern wide-issue superscalar

processors. The main additions needed are the ability

to fetch instructions from multiple threads in a cycle,

the ability to distinguish instructions from different

threads, and a larger register file to hold the machine

states of multiple threads. The number of concurrent

threads can be decided by the chip designers, but

practical restrictions on chip complexity have limited

the number to two for most commercial SMT

implementations.

In processor design, there are two ways to

increase on-chip parallelism with less resource

requirement: one is superscalar technique which tries

to increase Instruction Level Parallelism (ILP), the

other is multithreading approach exploiting Thread

Level Parallelism (TLP). The SMT inherits all

characteristics of superscalar architecture, so it is able

to exploit ILP as well as TLP.

Figure 1.1: Comparison of different kinds of

Multithreading.

1.2 Biased Branch

Some branch instructions show significant

tendency to be mostly taken (branch out) or not-taken

(fall through) in the instruction flow. We call this kind

of branches “strongly biased branch”. Most of the

time, a branch categorized as Not-taken biased will

not change the direction of execution route, so the

instruction fetch unit can continue without being

stopped. In contrast, a taken biased or weakly biased

branch may have bigger chance to be predicted as

taken, so the instructions fetched after that kind of

branches will be discarded and the instruction

fetching will start from the target address of the taken

branch on next cycle.

From the phenomenon described above, we can

infer that a processor’s backend execution engine will

prefer threads with a more straightaway execution

path.

1.3 Basic Block and Sequential Trace

Basic Block is defined as a straight-line code

sequence which begins with the target of some taken

branch, ends with a branch to another basic block,

and with no branch in between. Basic blocks are

elementary units for both instruction fetching and

speculative execution.

If a basic block ends with a not-taken biased

branch, then most of the time the fetch unit will

continue fetch next basic block normally like the

2

branch doesn’t exist. If this kind of basic block

appears successively in a thread, execution following

this linear code sequence will have both good

prediction rate and good instruction delivery speed.

This kind of instruction stream, constructed by

contiguous basic blocks with not-taken biased

branches, is called “Sequential Trace” in this paper.

An overview of the relationship between basic

blocks and sequential trace is illustrated in Figure 1.2.

Figure 1.2(a) shows an example code of a basic

block. The shadowed line is the branch that

terminates the basic block. If the branch in the end of

a basic block is identified as not-taken biased, like the

basic block (3) and (4) in Figure 1.2(b), then the

block and contiguous fall-through blocks constitute a

sequential trace.

Sequential Trace

(1)

(2)

BB1:
lw $1, 0($10)
lw $2, 4($10)
mult $3, $1, $2
lw $4, 8($0)

beq $3, $4, BB2

(3)

(4)

(5)

Not-taken biased
branches

(a) (b)

Figure 1.2: Basic Block and Sequential Trace

2. RELATED WORK

For either conventional superscalar

architectures or SMT architectures, many researches

have been put into the front-end architecture in an

effort to improve the rate of instruction delivery to

the execution core.

Seznec et al. [4] proposed a high-bandwidth

design based on two-block ahead prediction. Rather

than predicting the target of a branch, they predict the

target of the basic block the branch will enter, which

allows the critical next PC computation to be

pipelined.

Tullsen et al. [2][3] not only proposed the very

first model of modern SMT architectures, they also

developed four fetch policies BRCOUNT,

MISSCOUNT, ICOUNT, and IQPSON which

improve the basic round-robin fetch policy by using

feedback information from pipeline. The ICOUNT

fetch policy achieves the highest performance among

the four typical fetch policies and becomes the

common base fetch policy in correlative papers. Their

further research analyzes the effect of long-latency

loads on SMT architecture and observes that freeing

the resource associated with a stalled thread is better

than keeping the thread ready to immediately execute

upon return of the load value.

The performance of SMT architecture depends

on how the fetch unit fetches instructions to fill IQs.

The fetch unit must intelligently decide which threads

to fetch from. Luo et al. [8] show the fetch policy that

uses both fetch prioritizing and fetch gating in SMT

architecture. Fetch prioritizing indicates that fetch

order is decided each cycle by counting the number

of unresolved low-confidence branches from threads.

The threads that have the more number of unresolved

low-confident branches are most likely in the wrong

execution sequence. Fetch gating avoids fetching

from a thread that has a stipulated number of

unresolved low-confidence branches.

Kang and Gaudiot [11] build a fetch unit to

control speculative execution and reduce the number

of wrong-path instructions. They present a front-end

mechanism, called SAFE-T, to count the number of

unresolved conditional branches with low-confidence

prediction in the pipeline.

El-Moursy and Albonesi [10] force on both

performance improvement and power optimization.

They provide three types of front-end policy based on

limiting the unready instructions and data missing

instructions in the queue. Their front-end policies

reduce the occupancy of the instruction issue queue

by increasing the number of instructions issued from

nearer the head of the queue and filling the queue

with instructions that are most likely to become ready

for issue in the near future.

Knijnenburg et al. [9] propose a fetch policy

based on dynamic branch classification mechanism to

avoid fetching instructions from wrong path. The

detail statement is described in section 4.1. The

branch prediction accuracy is crucial for reaching the

high degree of ILP in conventional architecture.

Many researches about branch prediction mechanism

have been proposed for increasing prediction

accuracy. McFarling [1] propose the classic gshare

predictor in which GHR XORs with branch address

to index PHR for looking up direction of prediction.

That reduces the interference between different

branches with the same global history.

In [5], Chang et al. introduce a biased branch

filter to reduce the interference in PHT of two-level

adaptive predictors. They dynamically identify a

branch as either a biased branch or not. The branch

that is almost taken or almost not taken is classified

as a biased branch. And a biased branch is restrained

to update PHT.

3

Lin and Shieh [12] further apply this kind of

biased branch filter combined with a confidence

estimator to classify conditional branches according

both their biases and their speculation confidences.

This classifying information is then used to help the

fetch unit in SMT processor to provide fetch gating

and fetch prioritizing. Detail of this branch prediction

mechanism will be described in the next section.

2.1 Introduction of Biased Branch Filter

In SMT architecture, multiple threads share

processor resource to reach high hardware utilization.

The branch prediction behavior may differ from the

conventional superscalar architecture due to

instructions from multiple threads. Moreover, the

branch latency can hide by feature of SMT

architecture that fetches instructions from other

threads.

Lin and Shieh [12] proposed a branch

prediction mechanism composed of biased branch

filter, confidence estimator, and classic gshare branch

predictor. This combination is claimed to achieve the

follwoing goals:

1. Achieve higher branch prediction accuracy.

2. Reduce the interference of PHT.

3. Reduce competition for branch prediction

mechanism.

4. Provide information for fetch unit as evidence.

The detail components of the branch prediction

mechanism will be described in the following

subsections.

A significant number of branches tend to be

most taken or not taken that has been demonstrated in

pervious researches. Some paper also showed that to

separate strongly biased branches from weakly biased

branches by profiling or run-time information obtain

some benefit. Chang et al. [5] propose the two-level

adapter branch predictors with biased branch filter.

Their scheme dynamically classifies branches based

on the history pattern of each branches to reduce

competition for branch prediction mechanism. An

identified biased branch is restrained to update the

PHT. Their technique can reduce PHT interference

and improve branch prediction accuracy.

In SMT architecture that multiple instructions

from multiple threads run simultaneously, the

difference of thread characteristic may cause some

negative effect to branch predictor.

In [12], the biased branch filter consists with a

4-way associative biased table where stores the

biased information of branches and a biased classifier

which classifies a branch as a strongly or weakly

biased branch, as shown in Fig. 2.1. The biased value

in each entry is an up-down counter to indicate that

the branch is taken biased, not taken biased, or non-

biased. If actual direction of a branch is taken, the

corresponding biased counter is increased by 1.

While the biased counter reaches the taken biased

threshold, the branch is classified as taken biased. If

actual direction of a branch is not taken, the

corresponding biased counter is decreased by 1.

While the biased counter reaches the not taken biased

threshold, the branch is classified as not taken biased.

If the biased counter is between taken biased and not

taken biased threshold, the branch is classified as

weakly biased branch. While a branch is classified as

a biased branch, the branch is inhibited to update

PHT and biased direction is used as the prediction

direction regardless of PHT.

Tag Index

Biased Table

Tag Context Biased Counter

Entry of Bias Table

Bias Classifier

Strongly/Weakly
Biased

Bias
Direction

Branch PC

Figure 2.1: Bias Branch Filter

3. THE SEQUENTIAL TRACE

MECHANISM

With the branch classification mechanism

described in last chapter, we can build information

about sequential traces during execution time. We

designed a cache-like structure called Sequential

Trace Table (STT) to record the information.In this

chapter we describe detail of STT and how it works

during execution time. Also we present a fetch policy

using the future speculation status provided by STT.

3.1 Sequential Trace Table

Figure 3.1 shows the structure of STT. It is a

4

cache-like 4-way set associative table indexed by the

target addresses of taken branches. If a branch

instruction is predicted as taken at fetch stage and

there is a BTB hit, its target address will be provided

by BTB for next fetch cycle. This speculative target

address is also used to index into SST searching for a

reference entry that may represent future speculation

condition of this thread. The detail of operations on

STT will be described in the following sections.

Tag Index

Taken Target Address

Tag Valid Bit

Sequential
Trace
Table

=

An Entry of STT

Miss Count Tail Address

Figure 3.1: The structure of Sequential Trace Table

3.2 Operations on STT

3.2.1 Construction of STT Entry

During the commit stage of execution pipeline,

if a taken branch is committed, its target address is

used to update Branch Target Buffer (BTB). In our

mechanism, this target address is also used to locate

an entry of STT, like (1) in figure 3.2. White arrows

in Figure 3.2 indicate the commitment of branches.

All instructions commit in-order from left to right.

(1) (2) (2) (3)

Tag Valid Bit

Entry of STT

Miss Count Tail Address

(2)

Target Address of (1) Target Address of (3)

Target Address of (1) PC Address of (3)

Figure 3.2: Operation during commit stage

In the following execution cycles, if another

branch in the same execution route is committed as

not taken, the STT entry located previously will be

set as valid, like (2) in figure 3.2.

Finally there will be a taken branch called

terminal branch that terminates this sequential trace,

like (3) in Figure 3.2. When the terminal branch is

being committed, the previously located STT entry

will be checked if the valid bit has been set. Only

entry with valid bit set, which means there is at least

one not-taken branch in between, will be recognized

as a valid entry. If the entry is valid, the address of

the terminal branch will be written into the ：Tail

Address ； part of the STT entry. This ends the

construction of an STT entry. The target address of

the terminal branch will be used to locate another

entry from STT, then, the step (1) to (3) in Figure 3.2

will be repeated as above.

3.2.2 Using STT for Branch Prediction

As shown in Figure 3.3, when there is no

reference STT entry for the current execution route

presently, the fetch engine handles branches

following the normal process of branch prediction. As

described in section 3.1, a branch predicted as taken

will trigger a probe into STT. If there is a valid hit in

the STT, the entry will be selected as a Reference

STT Entry.

Branch Predictor
with
BTB

STT

Valid STT Entry

hit
Predicted Target

Address

Selected as
Reference Entry

Fetch Unit

Instruction
Cache

Fetch
Address

Instructions

Branch
Address

Figure 3.3: Normal Fetch process and access to STT

Figure 3.4 shows the speculation mechanism

when there is a valid STT entry for current execution

path. As long as the branch being fetched is inside the

boundary of the sequential trace, the branch predictor

will predict it as not-taken.

If the fetched branch is outside of the boundary

of current sequential trace, which means the

Reference STT Entry no longer represents the

speculation condition of current execution route. The

Reference STT Entry will be ignored, and the process

of normal branch prediction and STT selection

described previously will be take.

5

Reference STT Entry Tail Address

<?

Branch
Address

Branch Predictor
with
BTB

TrueFalse
Branch Not

Taken

Normal
Prediction

Figure 3.4: Branch Prediction using Reference STT

Entry

3.2.3 Using STT for Fetch Prioritizing

Because the Sequential Trace implies a more

confirmable future speculation condition, we

modified the fetch algorism to give thread with

longer Sequential Trace a higher fetch priority. This

fetch policy totally replaced the original ICOUNT

fetch policy, so the difference of instruction numbers

between threads is generally not concerned about.

3.2.4 Invalidation of STT Entry

If a branch was predicted as not-take using

Reference STT Entry but turned out to be a taken

branch, the corresponding STT entry・s Miss Count

will be increased. If the miss count reaches a certain

level, the STT entry is considered as invalid. In this

paper, we only tolerate 3 misses for each STT entry.

4. SIMULATION

METHODOLOGY

4.1 The Simulator

The simulator used in this paper is

SimpleScalar Multithreading (SSMT) originally

developed by Madon et al. [7] based on the out-of-

order processor model of SimpleScalar toolset [6]. It

duplicates the SimpleScalar architecture’s physical

context according to the number of execution

contexts to execute simultaneously. The SSMT

simulator contains six pipeline stages: perfetch, fetch,

decode, execution, writeback, and commit.

Table 4.1 shows the configuration parameters

used in our simulations. We adopt ICOUNT as base

fetch policy. Each cycle, at most four threads will be

selected to share the fetch bandwidth.

The branch mechanism configuration is shown

in Table 4.2. The extra branch misprediction penalty

is set to 3 cycles for recovering the processor state,

and branches are resolved after execution stage. Thus

the branch misspeculation penalty is 8 cycle.

Table 4.1: Simulator parameters.

Parameter Value

Base Fetch Policy ICOUNT

Fetch / Issue / Commit
Bandwidth

8

Fetch Queue Size 32

Register Update Unit Size 128

Load / Store Queue Size 64

Integer Add/Mult Units 8 / 2

Floating Point Add/Mult
Units

8 / 2

Branch Predictor gshare

L1 Cache Block Size 32 Byte

ICache 128KB, 2-way

DCache 128KB, 2-way

L2 Cache Block Size 64 Byte

L2 Cache 2MB, 4-way

Fast-Forward Instructions 250,000,000

Commit Instructions 50,000,000

Table 4.2: Branch mechanism configuration.

Parameter Value

Base Branch Predictor gshare

Pattern History Table (PHT) 2K

Global History
Register (GHR)

11 bits

Branch Target Buffer (BTB) 256, 4way

Biased Table (BT) 256, 4way

Biased Counter 4bits

Taken/Not Taken Biased
Threshold

12 / 3

Miss Bit Counter 4 bits

Gating Threshold 15

Table 4.3: Integer and floating point based
benchmarks for simulation.

Benchmarks

Integer Based gzip, vpr, gcc, mcf, crafty, gap,
bzip2, twolf

Floating Point
Based

mesa, art, equake

Table 4.4: The selected benchmarks of each thread.

Workload 2-Thread Benchmarks

All Integer Based

W21 mcf, gcc

W22 bzip2, gzip

W23 gap, twolf

All Floating Point Based

W24 equake, art

W25 mesa, art

W26 mesa, equake

Mix of Integer and Floating Point Based

W27 gcc, art

W28 vpr, equake

W29 bzip2, mesa

Workload 4-Thread Benchmarks

All Integer Based

W41 mcf, gzip, crafty, twolf

W42 gcc, crafty, gzip, bzip2

W43 mcf, gap, bzip2, vpr

W44 mcf, crafty, gcc, vpr

Mix of Integer and Floating Point Based

6

W45 mcf, bzip2, mesa, art

W46 gcc, gzip, mesa, equake

W47 twolf, vpr, mesa, art

W48 bzip2, mcf, vpr, art

Workload 6-Thread Benchmarks

All Integer Based

W61 mcf, gzip, crafty, twolf, vpr, bzip2

W62 vpr, gcc, mcf, bzip2, twolf, crafty

Mix of Integer and Floating Point Based

W63 gcc, twolf, gzip, mesa, art, equake

W64 mcf, gzip, twolf, equake, mesa, art

W65 bzip2, crafty, gzip, twolf, mesa, art

W66 mcf, gzip, crafty, twolf, gcc, art

4.2 Workloads

We selected 11 applications (alpha ISA) from

the SPEC CPU2000 suite to construct our workloads

where 8 of them are integer based from CINT2000

suite and the others are floating point based from

CFP2000 suite. The benchmarks selected are listed in

Table 4.3. All the simulations were running on a

GNU/Linux x86 system with reference data sets.

Table 4.4 shows the selected combinations of

2-thread, 4-thread, and 6-thread workloads. We

combine different benchmarks to form three types of

workloads. These three types are integer based,

floating point based and mix of both respectively.

5. SIMULATION RESULTS

In the section, we present and analyze the

results of our simulation, including branch prediction

accuracy and IPC comparison.

5.1 Prediction Accuracy

Figure 5.1~5.3 shows the prediction accuracy

of each different fetch policy on each workload.

Comparing to baseline, FB policy improve the

prediction accuracy significantly because they not

only reduce the occurrence of misprediction but also

restrain strongly biased branches from polluting the

Pattern History Table.

STT+FB shows generally the same trend as FB

because the basic prediction mechanism is the same.

Only when the current fetch path is inside a

confirmed sequential trace, the comparison of fetch

address against STT will replace the normal branch

prediction algorithm. For some workloads STT

outperforms FB slightly (generally less than 1%), this

is because predictions of weakly-biased branches

inside a sequential trace are not affected by Global

History of Gshare predictor like in FB. This

prediction policy is more accurate for some

benchmarks with more stable sequential traces, so the

performance is strongly dependent on combination of

workloads.

W21 W22 W23 W24 W25 W26 W27 W28 W29 Avg
70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Baseline

STT_alone

FB

STT+FB

Workloads

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y

Figure 5.1: Prediction Accuracy of 2-thread

workloads

W41 W42 W43 W44 W45 W46 W47 W48 Avg

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Base line

STT_a lone

FB

STT+FB

Workloads

P
re

d
ic

tio
n
 A

c
cu

ra
c
y

Figure 5.2: Prediction Accuracy of 4-thread

workloads

W61 W62 W63 W64 W65 W66 Avg
70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Baseline

STT_alone

FB

STT+FB

Workloads

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y

Figure 5.3: Prediction Accuracy of 6-thread

workloads

5.2 Instruction Throughput

Figure 5.4 ~ 5.6 illustrate the variation of total

instructions per cycle (IPC). In the simulator, the end

time of threads is different that the final simulation

cycle to compute IPC is unfair, so we record the

termination of each thread to compute IPC for each

self. Then we total IPC of threads to get the overall

performance.

Figure 5.4 shows the performance of 2-thread

workloads. On average, STT+FB achieves 3% gain

over baseline, almost the same as the FB policy, but

the differences between each workload are intense.

7

This is caused by the fact that our fetch policy intends

to accelerate the thread having more sequential

traces, by assigning more fetch slut to it, and thus

clogs another. If the sequential trace information

collected by STT is incorrect, a counteraction will

happen.

W21 W22 W23 W24 W25 W26 W27 W28 W29 Avg

2

2.5

3

3.5

4

Baseline

STT_alone

FB

STT+FB

Workloads

IP
C

Figure 5.4: Total IPC of 2-thread workloads

Figure 5.5 and 5.6 show the results of 4-thread

and 6-thread workloads. STT+FB performs an

average gain of 8.9% over ICOUNT baseline and

5.6% over FB in 4-thread workloads, and achieves

15.7% and 9.8% performance gain respectively in 6-

thread workloads. Again the performance of our

policy fluctuates from one workload to another. One

reason for this phenomenon may be that STT was

indexed by the branch target address solely, which

result in the inaccuracy of STT entry selection.

W41 W42 W43 W44 W45 W46 W47 W48 Avg

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Baseline

STT_alone

FB

STT+FB

Workloads

IP
C

Figure 5.5: Total IPC of 4-thread workloads

W61 W62 W63 W64 W65 W66 Avg

3

3.5

4

4.5

5

5.5

6

6.5

7

Baseline

STT_alone

FB

STT+FB

Workloads

IP
C

Figure 5.6: Total IPC of 6-thread workloads

6. CONCLUSIONS

One of the most important research themes for

modern SMT processor development is the

distribution of hardware resources across the

concurrent threads. Fetch unit and branch prediction

mechanism are key points of resource distribution

over the whole execution pipeline, because any

instruction fetched into the execution pipeline

occupies processor resources no matter it is from

correct or wrong execution path.

Previously proposed FB and FGAP policies use

miss bit to estimate the probability of running into

wrong path for each thread. It is an effective method

of fetch gating but a thread can still fetch a number of

instructions before the miss bit reaches the threshold.

In this paper, we propose a cache-like

supplementary structure called Sequential Trace

Table (STT) to provide a look-ahead into the future

speculating conditions of each thread. We also

propose a fetch policy to make full use of the

information provided by STT. The simulation results

show that the prediction accuracy is 93.7% on

average compare to 93.3% by FB and 87.2% by

baseline gshare predictor. Average IPC performance

in 4-thread workload shows a maximal gain of 15.7%

over ICOUNT baseline and 9.8% over FB, but the

performance varies from one workload to another.

This is a result of that our fetch policy overly depends

on the benefit of sequential trace execution. A more

balanced result may be expected if we can design

another mechanism to make the fetch engine fall back

to ICOUNT or FB policy dynamically.

REFERENCE

[1] S. McFarling, "Combiting branch predictors,"

Technical Report TN-36, Digital Western

Research Laboratory, June 1993

[2] D. Tullsen, S. Eggers, and H. Levy,

"Simultaneous multithreading: Maximizing on-

chip parallelism," In 22nd Annul International

Symposium on Computer Architecture, June

1995

[3] D.M. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo,

and R. Stamm, "Exploiting Choice: Instruction

Fetch and Issue on an Implementable

Simultaneous Multithreading Processor", in the

Proceedings of the 23rd Annual International

Symposium on Computer Architecture, May

1996

[4] A. Seznec, S. Jourdan, P. Sainrat, and P.

Michaud, "Multiple-Block Ahead Branch

Predictors," Proc. Seventh Int'l Conf.

Architectural Support for Programming

Languages and Operating Systems, pp. 116-127,

8

Oct. 1996

[5] P.-Y. Chang, M. Evers, and Y. Patt, "Improving

Branch Prediction Accuracy by Reducing Pattern

History Table Interference," Proc. Int. Conf. on

Parallel Architectures and Compilation

Techniques, Oct. 1996

[6] D.C. Burger and T.M. Austin, "The Simplescalar

Tool Set, Version 2.0", Technical Report CS-TR-

97-1342, Univ. of Wisconsin, Madison, June

1997.

[7] D. Madon, E. Sanchez, and S. Monnier, "A

Study of a Simultaneous Multithreaded

Architecture," In Proceedings of EuroPar'99,

Toulouse, Lectures Notes in Computer Science,

Volume 1685, Springer-Verlag, pages 716-726,

August 31 - September 3 1999

[8] K. Luo, M. Franklin, S. Mukherjee, and A.

Sezne, "Boosting SMT performance by

speculation control," In 15th Proceedings of

International Parallel and Distributed Processing

Symposium (IPDPS), 2001.

[9] P.M.W. Knijnenburg, A. Ramirez, F. Latorre, J.

Larriba, and M. Valero, "Branch classification to

control instruction fetch in simultaneous

multithreaded architectures," In International

Workshop on Innovative Architecture for Future

Generation High-Performance Processors and

Systems (IWIA'02), January 10 - 11, 2002.

[10]A. El-Moursy, and D. Albonesi, "Front-end

policies for improved issue efficiency in SMT

processors," 9th International Symposium on

High-Performance Computer Architecture, pages

31-40, February 2003

[11] D. Kang, J.-L. Gaudiot, "Speculation Control for

Simultaneous Multithreading,"Proceedings of the

18th International Parallel and Distributed

Processing Symposium, Pages 76 ~ 85, April 26-

30, 2004

[12]C.-H. Lin, and J.-J. Shieh, "A Study of Branch

Prediction and Fetch Policy on Simultaneous

Multithreading Architecture," Master thesis,

Department of Computer Science and

Engineering Tatung University, July, 2004

9

