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夠對現代能 進行多重發送的超純量處理器而

夠言，指令提取單元是讓高效力的執行單元能 保

持全速運作的關鍵之一。用以評價指令提取單元的

數據不只有發送指令的速率還有投機執行的準度。

說也就是 一個好的指令提取單元要能在合理的時

內 擷脈時間 ，從正確的執行路徑上 取大量的指令。

步 狀在同 多線程架構的處理器上 況會有些許的不

同，因為在處理器中同時有多個活動中的程序。若

每 狀是能得知 個線程未來的投機執行 況，前端的

指令提取單元可以偏好具有高度可預測性執行路

產徑的執行緒，以避免誤入錯誤執行路徑時額外

生的資源及電力浪費。

步在本論文中，我們將焦點擺在改善同 多線

程處理器的前端執行單元。我們提出了一個輔助性

的結構稱作 Sequential Trace Table (STT) ，來

狀提供對各個執行緒投機執行 況的預先觀察。並利

狀用這些投機執行 況的資訊以輔助排定提取優先

權的策略。

關鍵詞關鍵詞關鍵詞關鍵詞 步：同 多線程架構、提取策略、投機執行。

Abstract

For modern wide-issue superscalar processors,

high  performance  instruction  fetch  unit is  the  key
component  to  keep  the  powerful  execution  engine

operating  in  full  speed.  The  performance

measurement  to  evaluate  a  front-end  mechanism

includes  both  the  instruction  delivery  rate  and

speculation accuracy.  That  means  a  good  front-end

engine should be able to fetch and dispatch massive

instructions  on  the  right  execution  path,  in  a

reasonable clock cycle time. Things may be a little

different  in  Simultaneous  Multithreading  (SMT)

architecture  because  there  are  multiple  active

contexts  inside  the  CPU.  If  we  can  extract  some

information  about  future  speculation  conditions  of

each  thread,  the  front-end  fetch  engine  can  then

prefer threads with highly predictable execution path

to avoid resource or energy waste on mis-speculative

routes.

In this paper, we focus on improving the front-

end  engine  of  SMT  processor.  We  present  a

supplementary  structure  called  Sequential  Trace

Table (STT) to provide a look-ahead into the future

speculating  conditions  of  each  thread,  and  use  the

information  to  help  improving  fetch  prioritizing

policies.

Key words: Simultaneous Multithreading

Architecture, Fetch policy, Speculative Execution.

1. INTRODUCTION

Benefiting  from  the  improving  of

semiconductor process,  modern processor has much

design space  for  advanced  microarchitectures.  At  a

high  level  view point,  a  modern  high-performance

processor is composed of two processing engines: the

front-end  processor  and  the  execution  core.  The

front-end  processor  is  responsible  for  fetching  and

preparing (e.g., decoding, renaming, etc.) instructions

for  execution.  The  execution  core  orchestrates  the

execution of instructions and the retirement of their

register  and  memory  results  to  non-speculative

storage. These two processing engines are decoupled

with  internal  instruction  storages  and/or  reorder

structures, such as instruction queue, reorder buffer,

and reservation stations.

For the execution part, the focus is on how to

use  the  processor's  resources  effectively,  by

exploiting  parallelism  in  the  instruction  stream

provided  by  the  front-end  engine.  Such  efforts

include  out-of-order  issue,  speculative  issue,  value

speculation, and Simultaneous Multithreading (SMT)

execution  engine.  For  the  front-end  part,  the  more

and  more  powerful  execution engine  places  further
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demands  on  improving  both  speed  of  instruction

stream  delivering  and  accuracy  of  execution  path

selection.  This  kind  of  researches  result  in

sophisticated  branch  prediction  schemas  and  fetch

policies.

Unfortunately, fetch units implemented in most

of  the  modern  commercial  microprocessors  have

rigid restriction on the range of instructions they can

access in a single machine cycle:

1. The fetch unit can’t fetch across a taken branch.

That  means  the  instructions  fetched  in  one

cycle often belong to the same basic block.

2. The fetch unit can’t fetch across the boundary

of a cache line. A multi-port instruction cache

may help to mitigate this kind of limitation.

In this paper, we focus on improving the front-

end  engine  of  SMT  processor.  We  present  a

supplementary  structure  called  Sequential  Trace

Table (STT) to provide a look-ahead into the future

speculating  conditions  of  each  thread,  and  use  the

information  to  help  branch  prediction  and  fetch

prioritizing.

1.1 Simultaneous Multithreading

Multithreading  in  processor  architectures  is

similar  in  concept  to  Preemptive  Multitasking  in

operating systems but is implemented in a more fine-

grained  level  based  on  modern  out-of-order

superscalar processors.

Simultaneous  multithreading (SMT) is  one  of

the two main implementations of multithreading, the

other form being temporal multithreading. Figure 1.1

illustrates  the  characters  of  different  kinds  of

multithreading. In Temporal Multithreading, only one

thread  of  instructions  can  execute  in  any  given

pipeline  stage  at  a  time.  In  Simultaneous

Multithreading,  instructions  from  more  than  one

thread can be executing in any given pipeline stage at

a  time.  This  is  done  without  great  changes  to  the

hardware structure of modern wide-issue superscalar

processors. The main additions needed are the ability

to fetch instructions from multiple threads in a cycle,

the ability  to  distinguish instructions from different

threads, and a larger register file to hold the machine

states of multiple threads. The number of concurrent

threads  can  be  decided  by  the  chip  designers,  but

practical restrictions on chip complexity have limited

the  number  to  two  for  most  commercial  SMT

implementations.

In  processor  design,  there  are  two  ways  to

increase  on-chip  parallelism  with  less  resource

requirement: one is superscalar technique which tries

to  increase  Instruction Level  Parallelism (ILP),  the

other  is  multithreading  approach  exploiting  Thread

Level  Parallelism  (TLP).  The  SMT  inherits  all

characteristics of superscalar architecture, so it is able

to exploit ILP as well as TLP.

Figure  1.1:  Comparison  of  different  kinds  of

Multithreading.

1.2 Biased Branch

Some  branch  instructions  show  significant

tendency to be mostly taken (branch out) or not-taken

(fall through) in the instruction flow. We call this kind

of  branches  “strongly  biased  branch”.  Most  of  the

time, a branch categorized as Not-taken biased will

not  change the direction of execution route,  so  the

instruction  fetch  unit  can  continue  without  being

stopped. In contrast, a taken biased or weakly biased

branch may have  bigger  chance  to  be  predicted as

taken,  so  the instructions fetched after  that  kind  of

branches  will  be  discarded  and  the  instruction

fetching will start from the target address of the taken

branch on next cycle.

From the phenomenon described above, we can

infer that a processor’s backend execution engine will

prefer  threads  with  a  more  straightaway  execution

path.

1.3 Basic Block and Sequential Trace

Basic Block is defined as a straight-line code

sequence which begins with the target of some taken

branch,  ends with  a branch to  another basic  block,

and  with  no  branch  in  between.  Basic  blocks  are

elementary  units  for  both  instruction  fetching  and

speculative execution.

If a basic block ends with a not-taken biased

branch,  then  most  of  the  time  the  fetch  unit  will

continue  fetch  next  basic  block  normally  like  the
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branch  doesn’t  exist.  If  this  kind  of  basic  block

appears successively in a thread, execution following

this  linear  code  sequence  will  have  both  good

prediction rate and good instruction delivery speed.

This  kind  of  instruction  stream,  constructed  by

contiguous  basic  blocks  with  not-taken  biased

branches, is called “Sequential Trace” in this paper.

An overview of the relationship between basic

blocks and sequential trace is illustrated in Figure 1.2.

Figure  1.2(a)  shows  an  example  code  of  a  basic

block.  The  shadowed  line  is  the  branch  that

terminates the basic block. If the branch in the end of

a basic block is identified as not-taken biased, like the

basic  block  (3)  and  (4)  in  Figure  1.2(b),  then  the

block and contiguous fall-through blocks constitute a

sequential trace.

Sequential Trace

(1)

(2)

BB1:
lw $1, 0($10)
lw $2, 4($10)
mult $3, $1, $2
lw $4, 8($0)

beq $3, $4, BB2

(3)

(4)

(5)

Not-taken biased 
branches

(a) (b)

Figure 1.2: Basic Block and Sequential Trace

2. RELATED WORK

For  either  conventional  superscalar

architectures or SMT architectures, many researches

have been put  into  the  front-end architecture  in  an

effort to improve the rate of instruction delivery to

the execution core.

Seznec  et  al.  [4]  proposed  a  high-bandwidth

design based on two-block ahead prediction. Rather

than predicting the target of a branch, they predict the

target of the basic block the branch will enter, which

allows  the  critical  next  PC  computation  to  be

pipelined.

Tullsen et al. [2][3] not only proposed the very

first model of modern SMT architectures,  they also

developed  four  fetch  policies  BRCOUNT,

MISSCOUNT,  ICOUNT,  and  IQPSON  which

improve the basic round-robin fetch policy by using

feedback  information  from pipeline.  The  ICOUNT

fetch policy achieves the highest performance among

the  four  typical  fetch  policies  and  becomes  the

common base fetch policy in correlative papers. Their

further  research analyzes  the  effect  of  long-latency

loads on SMT architecture and observes that freeing

the resource associated with a stalled thread is better

than keeping the thread ready to immediately execute

upon return of the load value.

The performance of SMT architecture depends

on how the fetch unit fetches instructions to fill IQs.

The fetch unit must intelligently decide which threads

to fetch from. Luo et al. [8] show the fetch policy that

uses both fetch prioritizing and fetch gating in SMT

architecture.  Fetch  prioritizing  indicates  that  fetch

order is decided each cycle by counting the number

of unresolved low-confidence branches from threads.

The threads that have the more number of unresolved

low-confident branches are most likely in the wrong

execution  sequence.  Fetch  gating  avoids  fetching

from  a  thread  that  has  a  stipulated  number  of

unresolved low-confidence branches.

Kang  and  Gaudiot  [11]  build  a  fetch  unit  to

control speculative execution and reduce the number

of wrong-path instructions. They present a front-end

mechanism, called SAFE-T, to count the number of

unresolved conditional branches with low-confidence

prediction in the pipeline.

El-Moursy  and  Albonesi  [10]  force  on  both

performance  improvement  and  power  optimization.

They provide three types of front-end policy based on

limiting  the  unready  instructions  and  data  missing

instructions  in  the  queue.  Their  front-end  policies

reduce the occupancy of the instruction issue queue

by increasing the number of instructions issued from

nearer  the  head  of  the  queue  and filling the  queue

with instructions that are most likely to become ready

for issue in the near future.

Knijnenburg et  al.  [9]  propose  a  fetch policy

based on dynamic branch classification mechanism to

avoid  fetching  instructions  from  wrong  path.  The

detail  statement  is  described  in  section  4.1.  The

branch prediction accuracy is crucial for reaching the

high  degree  of  ILP  in  conventional  architecture.

Many researches about branch prediction mechanism

have  been  proposed  for  increasing  prediction

accuracy.  McFarling  [1]  propose  the  classic  gshare

predictor in which GHR XORs with branch address

to index PHR for looking up direction of prediction.

That  reduces  the  interference  between  different

branches with the same global history.

In [5], Chang et al. introduce a biased branch

filter to reduce the interference in PHT of two-level

adaptive  predictors.  They  dynamically  identify  a

branch as either a biased branch or not. The branch

that is almost taken or almost not taken is classified

as a biased branch. And a biased branch is restrained

to update PHT.
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Lin and Shieh [12] further  apply this  kind of

biased  branch  filter  combined  with  a  confidence

estimator to classify conditional branches according

both their  biases  and their  speculation confidences.

This classifying information is then used to help the

fetch unit in SMT processor to provide fetch gating

and fetch prioritizing. Detail of this branch prediction

mechanism will be described in the next section.

2.1 Introduction of Biased Branch Filter

In  SMT  architecture,  multiple  threads  share

processor resource to reach high hardware utilization.

The branch prediction behavior may differ from the

conventional  superscalar  architecture  due  to

instructions  from  multiple  threads.  Moreover,  the

branch  latency  can  hide  by  feature  of  SMT

architecture  that  fetches  instructions  from  other

threads.

Lin  and  Shieh  [12]  proposed  a  branch

prediction  mechanism  composed  of  biased  branch

filter, confidence estimator, and classic gshare branch

predictor. This combination is claimed to achieve the

follwoing goals:

1. Achieve higher branch prediction accuracy.

2. Reduce the interference of PHT.

3. Reduce  competition  for  branch  prediction

mechanism.

4. Provide information for fetch unit as evidence.

The  detail  components  of  the  branch  prediction

mechanism  will  be  described  in  the  following

subsections.

A significant  number  of  branches  tend  to  be

most taken or not taken that has been demonstrated in

pervious researches. Some paper also showed that to

separate strongly biased branches from weakly biased

branches by profiling or run-time information obtain

some benefit. Chang et al. [5] propose the two-level

adapter  branch  predictors  with  biased  branch filter.

Their scheme dynamically classifies branches based

on  the  history  pattern  of  each  branches  to  reduce

competition  for  branch  prediction  mechanism.  An

identified  biased  branch is  restrained  to  update  the

PHT. Their  technique  can reduce  PHT interference

and improve branch prediction accuracy.

In SMT architecture that  multiple instructions

from  multiple  threads  run  simultaneously,  the

difference  of  thread  characteristic  may  cause  some

negative effect to branch predictor.

In [12], the biased branch filter consists with a

4-way  associative  biased  table  where  stores  the

biased information of branches and a biased classifier

which  classifies  a  branch  as  a  strongly  or  weakly

biased branch, as shown in Fig. 2.1. The biased value

in each entry is an up-down counter to indicate that

the branch is taken biased, not taken biased, or non-

biased.  If  actual  direction of a branch is  taken,  the

corresponding  biased  counter  is  increased  by  1.

While  the  biased  counter  reaches  the  taken  biased

threshold, the branch is classified as taken biased. If

actual  direction  of  a  branch  is  not  taken,  the

corresponding  biased  counter  is  decreased  by  1.

While the biased counter reaches the not taken biased

threshold, the branch is classified as not taken biased.

If the biased counter is between taken biased and not

taken  biased  threshold,  the  branch  is  classified  as

weakly biased branch. While a branch is classified as

a  biased  branch,  the  branch  is  inhibited  to  update

PHT and biased direction is  used as  the prediction

direction regardless of PHT.

Tag Index

Biased Table

Tag Context Biased Counter

Entry of Bias Table

Bias Classifier

Strongly/Weakly
Biased

Bias
Direction

Branch PC

Figure 2.1: Bias Branch Filter

3. THE SEQUENTIAL TRACE

MECHANISM

With  the  branch  classification  mechanism

described in last  chapter,  we  can build  information

about  sequential  traces  during  execution  time.  We

designed  a  cache-like  structure  called  Sequential

Trace Table (STT) to record the information.In this

chapter we describe detail of STT and how it works

during execution time. Also we present a fetch policy

using the future speculation status provided by STT.

3.1 Sequential Trace Table

Figure 3.1 shows the structure of STT. It  is a
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cache-like 4-way set associative table indexed by the

target  addresses  of  taken  branches.  If  a  branch

instruction is  predicted  as  taken at  fetch stage  and

there is a BTB hit, its target address will be provided

by BTB for next fetch cycle. This speculative target

address is also used to index into SST searching for a

reference entry that may represent future speculation

condition of this thread. The detail of operations on

STT will be described in the following sections.

Tag Index

Taken Target Address

Tag Valid Bit

Sequential
Trace
Table

=

An Entry of STT

Miss Count Tail Address

Figure 3.1: The structure of Sequential Trace Table

3.2 Operations on STT

3.2.1 Construction of STT Entry

During the commit stage of execution pipeline,

if a taken branch is committed, its target address is

used to update Branch Target Buffer (BTB). In our

mechanism, this target address is also used to locate

an entry of STT, like (1) in figure 3.2. White arrows

in Figure 3.2 indicate the commitment of branches.

All instructions commit in-order from left to right.

(1) (2) (2) (3)

Tag Valid Bit

Entry of STT

Miss Count Tail Address

(2)

Target Address of (1) Target Address of (3)

Target Address of (1) PC Address of (3)

Figure 3.2: Operation during commit stage

In  the  following  execution  cycles,  if  another

branch in the same execution route is committed as

not taken,  the STT entry located previously will  be

set as valid, like (2) in figure 3.2.

Finally  there  will  be  a  taken  branch  called

terminal branch that terminates this sequential trace,

like (3) in Figure 3.2. When the terminal branch is

being committed,  the previously  located  STT entry

will  be checked if the valid bit  has been set.  Only

entry with valid bit set, which means there is at least

one not-taken branch in between, will be recognized

as a valid entry. If the entry is valid, the address of

the terminal branch will be written into the  ：Tail

Address ；  part  of  the  STT  entry.  This  ends  the

construction of an STT entry. The target address of

the  terminal  branch  will  be  used  to  locate  another

entry from STT, then, the step (1) to (3) in Figure 3.2

will be repeated as above.

3.2.2 Using STT for Branch Prediction

As  shown  in  Figure  3.3,  when  there  is  no

reference STT entry for the current execution route

presently,  the  fetch  engine  handles  branches

following the normal process of branch prediction. As

described in section 3.1, a branch predicted as taken

will trigger a probe into STT. If there is a valid hit in

the  STT,  the entry will  be  selected as a  Reference

STT Entry.

Branch Predictor
with
BTB

STT

Valid STT Entry

hit
Predicted Target 

Address

Selected as 
Reference Entry

Fetch Unit

Instruction
Cache

Fetch 
Address

Instructions

Branch 
Address

Figure 3.3: Normal Fetch process and access to STT

Figure  3.4  shows  the  speculation  mechanism

when there is a valid STT entry for current execution

path. As long as the branch being fetched is inside the

boundary of the sequential trace, the branch predictor

will predict it as not-taken.

If the fetched branch is outside of the boundary

of  current  sequential  trace,  which  means  the

Reference  STT  Entry  no  longer  represents  the

speculation condition of current execution route. The

Reference STT Entry will be ignored, and the process

of  normal  branch  prediction  and  STT  selection

described previously will be take.
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Reference STT Entry Tail Address

<?

Branch 
Address

Branch Predictor
with
BTB

TrueFalse
Branch Not 

Taken

Normal 
Prediction

Figure 3.4: Branch Prediction using Reference STT

Entry

3.2.3 Using STT for Fetch Prioritizing

Because  the  Sequential  Trace  implies  a  more

confirmable  future  speculation  condition,  we

modified  the  fetch  algorism  to  give  thread  with

longer Sequential Trace a higher fetch priority. This

fetch  policy  totally  replaced  the  original  ICOUNT

fetch policy, so the difference of instruction numbers

between threads is generally not concerned about.

3.2.4 Invalidation of STT Entry

If  a  branch  was  predicted  as  not-take  using

Reference  STT Entry  but  turned  out  to  be  a  taken

branch, the corresponding STT entry・s Miss Count

will be increased. If the miss count reaches a certain

level, the STT entry is considered as invalid. In this

paper, we only tolerate 3 misses for each STT entry.

4. SIMULATION

METHODOLOGY

4.1 The Simulator

The  simulator  used  in  this  paper  is

SimpleScalar  Multithreading  (SSMT)  originally

developed by Madon et al. [7] based on the out-of-

order processor model of SimpleScalar toolset [6]. It

duplicates  the  SimpleScalar  architecture’s  physical

context  according  to  the  number  of  execution

contexts  to  execute  simultaneously.  The  SSMT

simulator contains six pipeline stages: perfetch, fetch,

decode, execution, writeback, and commit.

Table 4.1  shows the configuration parameters

used in our simulations. We adopt ICOUNT as base

fetch policy. Each cycle, at most four threads will be

selected to share the fetch bandwidth.

The branch mechanism configuration is shown

in Table 4.2. The extra branch misprediction penalty

is set to 3 cycles for recovering the processor state,

and branches are resolved after execution stage. Thus

the branch misspeculation penalty is 8 cycle.

Table 4.1: Simulator parameters.

Parameter Value

Base Fetch Policy ICOUNT

Fetch / Issue / Commit
Bandwidth

8

Fetch Queue Size 32

Register Update Unit Size 128

Load / Store Queue Size 64

Integer Add/Mult Units 8 / 2

Floating Point Add/Mult
Units

8 / 2

Branch Predictor gshare

L1 Cache Block Size 32 Byte

ICache 128KB, 2-way

DCache 128KB, 2-way

L2 Cache Block Size 64 Byte

L2 Cache 2MB, 4-way

Fast-Forward Instructions 250,000,000

Commit Instructions 50,000,000

Table 4.2: Branch mechanism configuration.

Parameter Value

Base Branch Predictor gshare

Pattern History Table (PHT) 2K

Global History
Register (GHR)

11 bits

Branch Target Buffer (BTB) 256, 4way

Biased Table (BT) 256, 4way

Biased Counter 4bits

Taken/Not Taken Biased
Threshold

12 / 3

Miss Bit Counter 4 bits

Gating Threshold 15

Table 4.3: Integer and floating point based
benchmarks for simulation.

Benchmarks

Integer Based gzip, vpr, gcc, mcf, crafty, gap,
bzip2, twolf

Floating Point
Based

mesa, art, equake

Table 4.4: The selected benchmarks of each thread.

Workload 2-Thread Benchmarks

All Integer Based

W21 mcf, gcc

W22 bzip2, gzip

W23 gap, twolf

All Floating Point Based

W24 equake, art

W25 mesa, art

W26 mesa, equake

Mix of Integer and Floating Point Based

W27 gcc, art

W28 vpr, equake

W29 bzip2, mesa

Workload 4-Thread Benchmarks

All Integer Based

W41 mcf, gzip, crafty, twolf

W42 gcc, crafty, gzip, bzip2

W43 mcf, gap, bzip2, vpr

W44 mcf, crafty, gcc, vpr

Mix of Integer and Floating Point Based
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W45 mcf, bzip2, mesa, art

W46 gcc, gzip, mesa, equake

W47 twolf, vpr, mesa, art

W48 bzip2, mcf, vpr, art

Workload 6-Thread Benchmarks

All Integer Based

W61 mcf, gzip, crafty, twolf, vpr, bzip2

W62 vpr, gcc, mcf, bzip2, twolf, crafty

Mix of Integer and Floating Point Based

W63 gcc, twolf, gzip, mesa, art, equake

W64 mcf, gzip, twolf, equake, mesa, art

W65 bzip2, crafty, gzip, twolf, mesa, art

W66 mcf, gzip, crafty, twolf, gcc, art

4.2 Workloads

We selected 11 applications (alpha ISA) from

the SPEC CPU2000 suite to construct our workloads

where 8 of them are integer based from CINT2000

suite  and  the  others  are  floating  point  based  from

CFP2000 suite. The benchmarks selected are listed in

Table  4.3.  All  the  simulations  were  running  on  a

GNU/Linux x86 system with reference data sets.

Table 4.4 shows the selected combinations of

2-thread,  4-thread,  and  6-thread  workloads.  We

combine different benchmarks to form three types of

workloads.  These  three  types  are  integer  based,

floating point based and mix of both respectively.

5. SIMULATION RESULTS

In  the  section,  we  present  and  analyze  the

results of our simulation, including branch prediction

accuracy and IPC comparison.

5.1 Prediction Accuracy

Figure 5.1~5.3  shows the prediction accuracy

of  each  different  fetch  policy  on  each  workload.

Comparing  to  baseline,  FB  policy  improve  the

prediction  accuracy  significantly  because  they  not

only reduce the occurrence of misprediction but also

restrain strongly biased branches from polluting the

Pattern History Table.

STT+FB shows generally the same trend as FB

because the basic prediction mechanism is the same.

Only  when  the  current  fetch  path  is  inside  a

confirmed sequential  trace,  the comparison of fetch

address against STT will replace the normal branch

prediction  algorithm.  For  some  workloads  STT

outperforms FB slightly (generally less than 1%), this

is  because  predictions  of  weakly-biased  branches

inside a sequential trace are not  affected by Global

History  of  Gshare  predictor  like  in  FB.  This

prediction  policy  is  more  accurate  for  some

benchmarks with more stable sequential traces, so the

performance is strongly dependent on combination of

workloads.
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Figure  5.1:  Prediction  Accuracy  of  2-thread

workloads
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Figure  5.2:  Prediction  Accuracy  of  4-thread

workloads

W61 W62 W63 W64 W65 W66 Avg
70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Baseline

STT_alone

FB

STT+FB

Workloads

P
re

d
ic

ti
o
n
 A

c
c
u
ra

c
y

Figure  5.3:  Prediction  Accuracy  of  6-thread

workloads

5.2 Instruction Throughput

Figure 5.4 ~ 5.6 illustrate the variation of total

instructions per cycle (IPC). In the simulator, the end

time of threads is different that the final simulation

cycle  to  compute  IPC  is  unfair,  so  we  record  the

termination of each thread to compute IPC for each

self. Then we total IPC of threads to get the overall

performance.

Figure 5.4 shows the performance of 2-thread

workloads. On average,  STT+FB achieves 3% gain

over baseline, almost the same as the FB policy, but

the  differences  between each workload are  intense.
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This is caused by the fact that our fetch policy intends

to  accelerate  the  thread  having  more  sequential

traces,  by assigning more  fetch slut  to  it,  and thus

clogs  another.  If  the  sequential  trace  information

collected  by STT is  incorrect,  a  counteraction  will

happen.
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Figure 5.4: Total IPC of 2-thread workloads

Figure 5.5 and 5.6 show the results of 4-thread

and  6-thread  workloads.  STT+FB  performs  an

average  gain  of  8.9%  over  ICOUNT baseline  and

5.6% over  FB in 4-thread workloads,  and achieves

15.7% and 9.8% performance gain respectively in 6-

thread  workloads.  Again  the  performance  of  our

policy fluctuates from one workload to another. One

reason  for  this  phenomenon may be  that  STT was

indexed  by the  branch target  address  solely,  which

result in the inaccuracy of STT entry selection.
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Figure 5.5: Total IPC of 4-thread workloads
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Figure 5.6: Total IPC of 6-thread workloads

6. CONCLUSIONS

One of the most important research themes for

modern  SMT  processor  development  is  the

distribution  of  hardware  resources  across  the

concurrent threads. Fetch unit and branch prediction

mechanism  are  key  points  of  resource  distribution

over  the  whole  execution  pipeline,  because  any

instruction  fetched  into  the  execution  pipeline

occupies  processor  resources  no  matter  it  is  from

correct or wrong execution path.

Previously proposed FB and FGAP policies use

miss bit to estimate the probability of running into

wrong path for each thread. It is an effective method

of fetch gating but a thread can still fetch a number of

instructions before the miss bit reaches the threshold.

In  this  paper,  we  propose  a  cache-like

supplementary  structure  called  Sequential  Trace

Table (STT) to provide a look-ahead into the future

speculating  conditions  of  each  thread.  We  also

propose  a  fetch  policy  to  make  full  use  of  the

information provided by STT. The simulation results

show  that  the  prediction  accuracy  is  93.7%  on

average  compare  to  93.3%  by  FB  and  87.2%  by

baseline gshare predictor.  Average IPC performance

in 4-thread workload shows a maximal gain of 15.7%

over  ICOUNT baseline and 9.8% over  FB,  but  the

performance  varies  from one  workload  to  another.

This is a result of that our fetch policy overly depends

on the benefit of sequential trace execution. A more

balanced  result  may  be  expected  if  we  can  design

another mechanism to make the fetch engine fall back

to ICOUNT or FB policy dynamically.
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