
 1

Design of Automatic Timing Verification Tool for FPGA Systems

Abstract
Speeding up verification is a significant issue on

development of FPGA systems. During pre-simulation
phase, the simulator only generates stimulus and
response with behavior of circuits. However,
simulation and debugging steps in designing a
complex system require extremely long and
time-consuming test sequences. In this work, we
propose an efficient verification method to
automatically verify between golden data and
simulation results on bus transaction in FPGA systems.
Additionally, we also develop and integrate an
enhanced FPGA verification tool with graphic user
interface to verify user’s design. Finally, a simple
CPU design example will be demonstrated to show
the feasibility of proposed tool.

Keyword: FPGA system, Bus transaction, Timing
verification

1. Introduction
Nowadays, with millions of gate counts design is

often development in consumer electronics. While
considering cost-down issue of verification, FPGA is
the cheapest prototyping platform to combine design
to stimulus. However, some verification tools are
provided by CAD/EDA companies FPGA vendors for
system design. But some verification issues are still
lack the valid method to solve such as time
consuming, exploded transitions and enormous test
patterns.

ModelSim 6.1f software is a well-known
simulation tool that is developed by Mentor Graphics.
After Xilinx ISE synthesizes VHDL or Verilog design,
designer can further edit testbench waveform file by
Xilinx ISE by for behavioral simulation. The other
tool known as ChipScope Pro software is so called
“software logic analyzer”. It makes verification of
FPGA platform analyzable and investigable by JTAG
interface which defined IEEE 1149.1 standard and
communicates status with external/internal signals.
According to ChipScope Pro design flow, designer
can firstly use ChipScope Pro core inserter to set

probe points on external/internal signals. Next, both
design and set probe points will be synthesized,
placed and routed in order by Xilinx ISE. Finally,
designer downloads the executing program of bit
stream into FPGA and observes waveforms of probe
signals.

For complex system design, designers often use
module-based design. A complex system design is
partitioned into several modules. These modules are
IPs or custom designs with correct functionality.
However, a complex system design may work
abnormally due to bus transaction errors between
modules. To find bugs, designer often observes timing
diagram in simulator to debug. The debugging will
cost much time and effort. Testbench only records
stimulus and response. Analysis between testbench
and golden data is an artificial task. Such task may not
find out bugs due to carelessness. Therefore,
verification of bus transaction has been studied due to
the practical importance in the FPGA system design.
In this work, we propose an algorithm and develop a
verification tool that automatically detects the
differences between golden data and testbench of
simulation result.

The remainder of this paper is organized as
follows. Section 2 presents preliminaries of this paper.
In Section 3, we propose a method to solve the
verification for bus transaction. In Section 4, we
present the design of user graphic interface.
Experimental results are shown in Section 5. Finally,
the conclusion is given in Section 6.

2. Preliminaries
Advanced fabrication process technology drives the

capacity of FPGA to hundred of millions logic
elements or more. Verification in FPGA of high
capacity must be a time-consuming and hard work. In
2001, Rashinkar et al. [1] estimate the cost of
verification in 40% to 70%. In order to reduce efforts
and time-consuming, some researchers have been
investigated on verification of FPGA in recent years.

With fast hardware/software co-verification,
Nakamura et al. [2] propose the simulation of
hardware/software interface which used sharing
communication register (SCR) as a bridge between

Trong-Yen Lee1, Chou-Chuan Yao1, Yang-Hsin Fan1,2, Chia-Chun Tsai3, Rong-Shue Hsiao1

1Dept.of Electronic Engineering and Institute of Computer and Communication Engineering,
National Taipei University of Technology, Taipei, Taiwan, R.O.C.

2Information System Division of Library,
National Taitung University, Taitung, Taiwan, R.O.C.

3Dept. of Computer Science and Information Engineering,
Nanhua University, Chia-Yi, Taiwan, R.O.C.

 1{tylee, t5418069, rshsiao}@ntut.edu.tw, 2yhfan@nttu.edu.tw, 3chun@mail.nhu.edu.tw

 2

simulator and emulator. Moreover, peripheral
component interconnect (PCI) local bus is also used to
communicate with simulator and emulator in their
research. Lin et al. [3] also design dynamic and static
monitoring methods to modify embedded software
even the system is running. In 2004, Chuang et al. [4]
use “snapshot” method to record status of internal
registers of a FPGA. Next, they replay the signals in a
software simulator to debug. For emulating issue, Oh
et al. [5] use four Xilinx Virtex-1000 FPGAs to
combine an emulator for functional verification of
multi-media processor. They also insert debugging
module for trap debugging in each FPGA. For their
propose method, the emulator provides virtual wires
to overcome the problem, but even physical wires are
not enough. In bus transaction verification, Huang et
al. [6] propose language-based methodology to
generate transaction extractors for on-chip buses.
They state that their approach can reduce verification
time of internal interfaces between IPs.

In our previous work, we have developed a tool,
namely FVT (Functional Verification Tool) [7], to
automatically verify among the user definition
specification file, output testbench waveform file and
testing waveform file which is generated by
ModelSim and Xilinx ChipScope Pro, respectively.

3. Verification Method for Bus
Transaction

Normally, a timing diagram is used for debugging
in a system design. However, designer spends much
effort to check between the golden data and testbench.
Designer may make mistakes while checking between
the golden data and testbench. This work proposes a
method to compare golden data and testbench for bus
transaction automatically. Therefore, proposed method
reduces mistakes due to carelessness and speeds up
verification time of bus transaction for FPGA systems.

Control signal such as write signal waveform can
be encoded and saved as binary string per clock.
Figure 1(a) illustrates an example that waveform is
encoded to binary string as 101010110011001. Unlike
control signal, bus signal can be saved multi bits per
clock such as Fig. 1(b). Therefore, we save control
and bus signal into arrays and perform verification
algorithm for bus transaction.

If control signal is input, proposed method
compares the first digit and the 8th in golden data and
testbench. If the result is true, hush function from the
first digit to 8th digit will be calculated. Hash values of
testbench and golden data are compared. If they are
equal, other digits between the golden data and
testbench will be compared. Next, golden data will be
shift right 1 bit and repeat above process. Fig. 2(a)
shows the detail process for our proposed method.

Figure 2(b) shows detail verification process for
bus signal. Golden data are compared with
corresponding testbench and then the comparison of
results will be output.

(a)Encode and Save Waveform Signals to Binary

Strings

(b)Save Bus Signal per Clock

Fig. 1 Saving Format for Two Types of Signals

… Testbench

Golden Data, hash value=p

1 0 1 1 1 1

1 1 1 1 1

0 0

0 0 0

1 1 1 1 10 0 0

(hash value of

testbench = q)

… Testbench

q
(hash value of golden data=p)

q = p ?

true

1 1 1 1 1

0 0

0 0

0 0 0 0 0

true

… Testbench

equal? equal?

equal?

1 1 1 1 10 0 0 Golden Data

… Testbench 1 1 1 1 1

1 1 1 1

0 0 00 0

0 0 0 0

equal? equal?

Golden Data

true, output answer and shift right 1 bit

repeat above process

false

false

false

Sh
ift

 ri
gh

t 1
 b

it

(simulation result)

(simulation result)

(a) Process of Control Signal Verification

 00100101

00100101

01010101

01010101

01010101

01010101

10101010

10101010

10101010

10101010

01011010

01011010

01011010

01011010

… Testbench

Golden Data

output answer and golden data shift right 1 bit

… Testbench

equal?

00100101 01010101 01010101 1010101010101010 01011010 01011010

00100101 01010101 01010101 10101010 10101010 10101010 10101010

equal?

Golden Data

(simulation result)

(simulation result)

 (b) Process of Bus Signal Verification
 Fig. 2 Process of Verification Method

 3

TABLE I Bus Verification Algorithm

Table I shows the verification algorithm for bus
transaction that consists of 11 steps. If we verify
control signals such as write signal, step 3 will be
performed. Hash value of golden data is calculated by
hash function. In step 4, the first digit of golden data
and ith digit of testbench will be compred. The mth
digit of golden data and the [i+m-1]th comparison will
also be performed in this step. Both of above answers
are true, hash value of testbench from i to i+m-1 will
be calculated in step 5. In step 6 and 7, if hash value
of golden data pattern equals current testbench, other
digits between golden data pattern and current
testbench will be compared. Step 8 may not be run if
the result of step 7 is false. Step 4 to 8 will be
performed repeatedly until for loop running
completely.

If we verify bus signals such as address bus, step 10
will be performed. Step 10 compares golden data and
testbench. Step 11 may not be run if the result of step
10 is false. Step 10 to 11 will be performed repeatedly
until for loop running completely.

4. User Graphic Interface Design
We not only present verification method for bus

transaction but also design a friendly graphical user
interface (GUI) for designer. Fig. 3 shows the GUI
which is used to verify the design between user given
golden data and testbench. The GUI and verification
algorithm are integrated in a tool, namely EFVT
(Enhanced FPGA Verification Tool) for verification of
FPGA system. EFVT is developed under Microsoft

Fig. 3 The Integrated Verification Tool: EFVT

Fig. 4 Process Flow of EFVT

Visual Basic 6.0.
Figure 4 shows the process flow of EFVT.

Testbench file is generated by ModelSim and the
golden data is produced by C, C++ or designer
definition. Testbench reader and golden data reader
not only reads testbench file and golden data,
respectively but also builds data in memory. Next,
testbench and golden data is inputted to BUS
verification algorithm separately. Finally, program
outputs verification results that include timing
information and pattern occurring position in
testbench.

Testbench reader builds data according to
information such as signal name and timing record
listed on testbench file. Functionality of golden data
reader is the same as testbench reader. Nevertheless,
format of golden data file is different from testbench
file. Interpretation method between golden data reader
and testbench reader are different.

5. Experimental Results
For demonstration our proposed tool, we design

and implement a simple CPU design example that
includes an ALU, buses and memory as shown in Fig.
5. ALU computes data and store result into memory.
Besides, we add function of bus control into ALU;
therefore the role of ALU is also a bus controller. This
ALU operates adding, subtraction, multiplying and

Verification Algorithm for Bus Transaction
(testbench[1..n],golden_data[1..m])

1 Select Case;
2 Case: Control Signal
3 h_golden_data=hash(golden_data[1..m])
 for(i=1; i<=n-m+1; i++)
 {
4 if (testbench[i]=golden_data[1]) and

(testbench[i+m-1]=goden_data[m]) then
5 h_testbench=hash(testbench[i..i+m-1])
6 if h_golden_data=h_testbench then
7 if testbench[i+1..i+m-2]=

golden_data[2..m-1] then
8 print “occurs on” i “to” i+m-1
 end if;
 end if;
 end if;
 }
9 Case: Bus Signal
 for(i=1; i<=n; i++)
 {
10 if testbench[i..i+m-1]=

golden_data[1..m] then
11 print “occurs on” i “to” i+m-1
 end if;
 }

End Case;
End Select;

Output verification results

input Golden Datainput Testbench

EF
V

T

Testbench file generated
by ModelSim

Golden Data produced by
designer

Golden Data reader Testbench reader

Running BUS verification
algorithm

 4

TABLE II Operation of Instruction Code

Instruction Code Operation
000 Adding
001 Subtraction
010 Multiplying
011 XOR
100 AND
101 OR
110 Write data to result memory
111 Move data from source memory A to

result memory

 ALU/BUS Controller

Instruction
Memory

Source Memory
A

Source Memory
B

Result
Memory

Instruction bus

3

8 8
16Data Bus A Data Bus B

Result Data Bus

Fig. 5 A Simple CPU Architecture
logical functions such as AND, OR, XOR and data
moving. Two input data buses and one output result
data bus are 8 bits and 16 bits, respectively.
Instruction bus and data buses are isolated. ALU runs
program sequentially and not support jump instruction.
ALU also fetches operands sequentially.

There are four memories in the system, such as
instruction memory, source memory A, source
memory B and result memory. Instruction memory
stores instructions such as adding, subtraction,
multiplying, AND, OR and data moving. Source
memory stores operands and test patterns. Once ALU
operates data moving instruction, data will move from
source memory to result memory. Result memory also
stores arithmetic and logical operation results.
Instruction codes are listed summary as Table II.

The environment of experiments includes personal
computer (PC), Xilinx ISE 8.2i, and ModelSim SE
6.1f. The PC is running on Pentium IV 2.8GHz with
HT (hyper-threading technology) and 1GB RAM. We
design and implement the simple CPU by VHDL and
synthesis tool by Xilinx ISE 8.2i. Testbench file and
golden data file is generated by ModelSim 6.1f and
designer, respectively.

We divide the experiments in two phases. In the
first phase, the simple CPU performs arithmetic (or
logical) operation and writing operation. We generate
operands in source memory A and B randomly.
Instruction code is also generated from 000 to 101
randomly. After each arithmetical (or logical)
operation, ALU writes answer to result memory. Such
sequences will performs 100 times. Testbench file is
generated by ModelSim 6.1f. Next, we inputted
golden data and testbench file into EFVT.

Fig. 6(a) shows comparing result between golden
data and testbench. EFVT also shows timing
information of golden data and testbench as shown in
Fig. 6(b) and 6(c), respectively. We know system
designed correctly after observing verification result.

During phase 2, the simple CPU performs data
moving from source memory A into result memory 25
times. In order to demonstrate the feasibility of our

(a) Comparison of between Golden Data and

Testbench

(b) Timing Information in Golden Data File

(c) Timing Information in Testbench

Fig. 6 Partly Verification Result of the First
Experiment

(a) Running Results in Result Memory by EFVT

(b)Running Results in Source Memory A by EFVT

Fig. 7 Partly Verification Result of the Second
Experiment

 5

TABLE III Comparisons of Design Target

Design Target Our Proposed Huang [6]
Abstraction Level Signal Level System Level

Objective FPGA System
Prototyping

System Level
Design Evaluation

Bus Transaction
Description

Method
Text File PSL[8]

TABLE IV Comparison of between EFVT and
FVT

Function EFVT FVT[7]
Functional verification among golden

data, testbench and Chipscope Pro Yes Yes

Error rates report of functional
verification Yes Yes

Verification for bus transaction Yes not support
Timing information display Yes not support

Point out errors or questionable
transitions easy hard

Debugging effort less more

verification tool, we insert a bug into the ALU. EFVT
will find the bug. Testbench file is generated by
ModelSim 6.1f. Next, we inputted golden data and
testbench file into EFVT.

Partly verification result is shown in Fig. 7(a) for
conciseness. Actually, EFVT lists moving data 24
times due to bug in the ALU. Fig. 7(b) shows the
source memory A that does not output data during
clock 1 to 8. If system were designed correctly, EFVT
would find moving data 25 times during clock 1 to
200. EFVT finds whether testbench against golden
data.

In Table III, we compare the design target between
our proposed tool and Huang[6]. Huang’s approach
focuses on system level design and describes bus
protocol in PSL[8]. Our tool verifies bus transaction
for FPGA system prototyping and deals with detail
signal transition in bus protocol.

Our proposed tool also improved the previous work
[7]. Table IV shows the differences between EFVT
and FVT. EFVT not only performs previous
verification work but also verifies bus transaction
between golden data and testbench. Timing
information of golden data and testbench can be
displayed in EFVT. Finally, designer spends less
effort to find bug with EFVT.

6. Conclusions
A design of automatic timing verification tool for

FPGA systems is presented. An efficient verification
algorithm is proposed to reduce the debugging time in
a design FPGA system. We also design a friendly
graphic user interface for system designer to use
easily. Finally, a simple CPU design example is
shown to demonstrate the feasibility of proposed tool.
From experimental results shown that the proposed
tool has improved preliminary proposed tool [7].

References
[1] P. Rashinkar, P. Paterson and L. Singh,

Systm-On-a-Chip Verification: Methodology and
Techniques, 2nd ed., Kluwer Academic, 2001.

[2] Y. Nakamura, K. Hosokawa, I. Kuroda, K.
Yoshikawa and T. Yoshimura, “A fast
hardware/software co-verification method for
systern-on-a-chip by using a C/C++ simulator and
FPGA emulator with shared register
communication,” Proceeding of the 41st Design
Automation Conference, pp. 299-304, Jun. 7-11,
2004.

[3] Y.-F. Lin, X.-Y. Zeng, M. Wu, J. Chen, R. Bao,
“New methods of FPGA co-verification for system
on chip (SoC),” Proceeding of ASICON
Conference, Vol. 1, pp. 169-172, Oct. 2005.

[4] C. L. Chuang, D. J. Lu, and C. N. J. Liu, “A
snapshot method to provide full visibility for
functional debugging using FPGA,” Proceeding of
the 13th Asian Test Symposium (ATS2004), pp.
164-169, Nov. 15-17, 2004.

[5] K.-S. Oh, S.-Y. Yoon, and S.-I. Chae, “Emulator
environment based on an FPGA prototyping
board,” Proceeding of Rapid System Prototyping,
pp. 72-77, Jun. 2000.

[6] Y. L. Huang, C. Y. Wang, R. Yeh, S. C. Chang, and
Y. C. Chen, “Language-Based High Level
Transaction Extraction on On-chip Buses,”
Proceeding of the International Symposium on
Quality Electronic Design (ISQED’06), pp. 27-29,
Mar. 2006

[7] T. Y. Lee, Y. H. Fan, S. C, Yen, C. C. Tsai and R. S.
Hsiao, “An Integrated Functional Verification Tool
for FPGA Systems,” IEEE Computer Society of
the 2nd International Conference on Innovative
Computing, Information and Control (ICICIC’07),
Sep. 5-7, 2007.

[8] Accellera. “Property Specification Language
Reference Manual Version 1.01,” 2003.

