
Low Power Mapping and Pipelined Scheduling
Using Tabu Search

Liu Jin-Lin, Wu Kun-Yi, Kuang Shiann-Rong
Department of Computer Science Engineering, National Sun Yat-Sen University

Kaohsiung, Taiwan
jinlin.liu@m2k.com.tw

Abstract—

An tabu search based approach for distributed embedded sys-
tems synthesis is presented in this paper. This approach maps
each computation task of a particular application onto a system
component with multiple supply voltages, schedules the execution
of these computation tasks and communication time of global
shared bus into pipeline stages. The objective is to minimize the
total power consumption subject to the throughput constraint on
the pipelined system architecture. The results of experiments
show a very good performance to obtain the near-optimal solu-
tion compared with global optimal solution obtained by
ILP(Integer Linear Programming) approach [1] and analysis the
number of orderings in ordering pool to trade-off speed and
quality of solution.

I. INTRODUCTION

Multimedia and wireless devices typically have intensive
computations and an endless stream of input data with
throughput constraints. Most of these devices are designed for
portable applications, demanding for low-power and high-
performance is greatly growing. But there are many trade-off
between low-power and performance. System synthesis with
power optimization try to solve the design problem which
meet the timing constraints. The problem involves various
steps such as mapping, scheduling, and dynamic voltage
scaling. All step are highly complex and dependent to each
other. For example, scheduling cannot be performed without
the execution time of computation tasks, which are available
only after PE instances and supply voltages being selected.
And the voltage selection problem must be considered simul-
taneously to trade-off performance and power consumption.
We try to develop an integrated approach to cope with these
design steps simultaneously.

The work in [2] presents a power-delay model to show that
dynamic voltage scaling(DVS) can provide drastic power
reduction. For given multiple discrete supply voltages and
sequential tasks with arbitrary time constraints, a voltage
assignment technique which produces a feasible task schedule
with optimal processor energy consumption. [3] provide the
optimal voltage allocation model with add-on non-uniform
load capacitances model.

 The system synthesis problem composite of scheduling
and mapping problem together. Except for the optimal
approaches [4, 5], various heuristic approaches including
iterative improvement, constructive method, such as genetic
algorithm, simulated annealing and tabu search [7] have been

used to synthesize system architectures. In these three
algorithm, tabu search provide a solution quality in a short
time[6]. However, all these approaches mentioned so far
assume that the computation tasks in the system execute
sequentially so that they cannot construct efficient pipelined
architecture for stream applications. In contrast, [9]–[11] have
proposed approaches to build the pipelined system architec-
ture.

Schmitz [12] have demonstrated the efficiency of system
architecture synthesis with DVS technique in reducing the
power consumption. But it did not perform pipelined
scheduling in the system. Our approach is based on tabu
search that minimizes the total power consumption of
pipelined system architecture including DVS components
under throughput constraints. All of mapping, pipelined
scheduling, and voltage selection are considered.

The remainder of this paper is organized as follows.
Section 2 describes the integrated system architecture
synthesis problem of distributed embedded systems for multi-
media applications. Section 3 explains our algorithm to solve
the integrated problem. Section 4 applies the proposed
approach to some examples and discusses the experimental
results. Finally, we give a conclusion.

II. PROBLEM DESCRIPTION

A. Task Graph
Typically multimedia applications are dominated by data-

flow constructs and can be described as a task graph at a
coarse level of granularity. It may be simplified as an pure,
non-hierarchical data-flow computation nodes and communi-
cation nodes,and each node is executed the same number of
times. This is a very restricted semantic but useful in
streaming application, the most execution time is spent on the
inner loop, called computation kernel. And we focus on the
repeat behavior of computation kernel in streaming applica-
tion.

We extract the computation kernel as the task graph G(V,
E, I, O), a directed acyclic graph, where V denotes a set of
functional nodes and E denotes a set of communication edges.
Moreover, I and O are dummy nodes called the input and
output nodes which are used to model the I/O environment
and specify the throughput constraint. Fi ∈ V is a functional
node and Cn(Fi1, Fi2) ∈ E is a communication edge from
source functional node Fi1 to destination functional node Fi2.
For the dependency relation in G, the functional node should

be activated after all its input edges are finished. And the
output edges cannot be activated until the source functional
node is finished. Considering the task graph depicted in Figure
1, C2 and C3 can be activated after I is finished, and F3 cannot
be activated until both C4 and C3 are finished.

B. Target Architecture
A distributed embedded system today usually consists of

multiple heterogeneous resources (uPs, DSPs, ASICs, etc.),
memory components, communication networks and communi-
cation interfaces. For the communication network, an on-chip
shared bus is adopted in our target architecture. In addition,
each component contains a buffer in order to temporarily store
the data from/to communication link. For the buffering model,
the out-going data can be transferred in the later time after
finishing computation and the incoming data can be held
before computation. Therefore, the scheduling is more flexible
and the communication will affect less on the scheduling of
PEs.

An example of target architecture, which consists of four
PEs, one system bus is shown in Figure 2. Moreover,
distributed PEs provide more power-saving opportunities.
More independent PEs share these functional nodes, more
slack time exists. As a result, the execution time of functional
nodes may be extended in lower voltage level.

C. Pipeline Scheduling
For the repeated nature of stream applications, pipelined

scheduling benefits the performance if there are enough PE
resources. Pipelined scheduling also works in the system
design low power system in throughput constraint. Depen-
dency constraints could be resolved in pipelined stages. There
are more opportunities to place longer execution time in lower
voltage and to find a mapping that has less communication
time.

The throughput constraint is the period of two consecutive
input samples. Figure 3 depicts a two-stage pipelined
scheduling in 120 throughput constraint. Communication and

computation nodes are repeatedly executed on assigned PE
instance.

Figure 3: An example of pipelined scheduling

D. Dynamic Voltage Scaling
The DVS supported PE dynamically scales the supply

voltage and operational frequency in accordance with the
performance requirements of the applications to reduce power
consumption. For preceding restrictions among tasks and the
throughput constraint, there are many idle time slot distributed
in each components. However, to execute a task in the lower
voltage in DVS-enabled PEs consumes less energy and spends
longer execution time than higher voltage. The energy-delay
model in DVS components is shown as flowing Equation 1-5 :

(1)

(2)

(3)

(4)

(5)

Equation 3 is derive by Equation 1 and 2. where PVdd and
TVdd denotes operational power and execution time of a task
mapped onto a specific PE in Vdd voltage. Vth is threshold
voltage a PE corresponding the manufacture characteristics.
We can evaluate the EVdd+∆v and TVdd+∆v by Equation 3, 4 and 5
in the difference voltage ∆v.

Based on the above explanation, the problem of integrated
system architecture synthesis for embedded streaming applica-
tions can be described as follows. Given a task graph G(V, E,
I, O), a resource library with the corresponding implementa-
tion information including PE’s execution time, PE's power
consumption, communication time, communication energy on
each communication node, a throughput constraint and stage
number constraint , the problem is to (1)map each Fi ∈ V to a
PE instance run at a feasible voltage to execute its function;
(2)schedule function computation and data communication in
pipeline; (3)assign each Cn(Fi1, Fi2)∈E to an internal commu-
nication, or the shared system bus; such that (4)the throughput
constraint, stage number constraints are satisfied; (5)total
power consumption are minimized.

Figure 1: An example of task graph

F
1

F
2

F
3I OC

1

C
2

C
4

C
3

C
5

Figure 2: An example of target architecture

DSP
buffer

local
memory

ASIC2
buffer

local
memory

ASIC1
buffer

local
memory

CPU
buffer

local
memory

System Bus

f Vdd=k⋅
V dd−V t

2

V dd

PVdd=CL⋅N 01⋅ f Vdd⋅V dd
2

T Vddv=
V dd v

V dd v−V th
2⋅
V dd−V th

2

V dd
⋅T Vdd

PVddv=
V ddv⋅V dd v−V th

2

V dd⋅V dd−V th
2 ⋅PVdd

EVdd v=PVddv⋅T Vddv

III. ALGORITHM

Our approach simultaneously determines PE instance
mapping, voltage mode and pipelined scheduling for all nodes
of application solved by the tabu search.

Tabu search[15] is an adaptive procedure for solving
complex optimization problems. The solution is encoded as
bits. Neighbors are generated from all solutions that are
exactly one bit different from initial solution in the first move
or current solution (the local optimal solution in the last
move). But not all solutions are admissible, such as tabu list
and intensification avoid some neighbors being a current
solution in the move. In the progress of searching, the local
local optimal solution in the admissible neighbors in each
move will be found out by burst force and the global optimal
solution will be improved by best current solution.

Tabu search can solve variable complex problems. In our
proposed algorithm, we modified tabu search and a pipelined
scheduling to solve the system architecture and scheduling
problem that we mentioned in the section 2. We explain our
system in detail as follows.

A. Tabu Search for Low Power in Distributed Embed System
There are two major procedures in proposed synthesis

system. One is the modified tabu search designed for solving
the mapping problem (PE instance mapping and voltage
mapping). The other is the pipelined scheduling to schedule
all selected neighbors from tabu search. For the pipelined
scheduling is most time-consuming procedure, a fast neighbor
filter is designed to drop bad neighbor mappings while
generating neighbors. Finally, the acceptable neighbor
mappings in the move have to get a schedule ordering to be
scheduled in pipelining, and the system drops the neighbors
that can not be scheduled. The diversification try to find
another current solution if the cost of current solution is the
same for several moves. And the diversification helps the
system for finding a new searching path in order to escape the
local optimal solution.

Figure 4 presents an overview of the synthesis system. The
initial solution is decided by CNPT [13] after preprocessing
the input data. We do not apply voltage optimization on initial
solution with CNPT and voltage level of all tasks are assigned
at maximal voltage level. However, CNPT is a efficient start
point to find a feasible PE instance mapping.

A flow chart of our approach is shown in Figure 4. The fat
arrows indicate the constant data generated once at the start-
up procedure. There are four user-defined constant data as
input in our system: (1)Task graph describes the application
by functional nodes, communication nodes, data
dependencies, and stage time constraint, (2)MLib provides the
energy cost and execution time of each functional node at
different voltage modes. The execution time and energy of
communication node are also listed in MLib, and
(3)constraints of pipelined scheduling and tabu search. All
above data is prepared before performing tabu search.

B. Encoding of Neighbors and Cost Function

 The set of tabu bits, a mapping solution, is encoded as
voltage level v and PE instance res together in a corre-
sponding functional task, from task 1 to task n, shown in
Equation 6. The two composite attributes, res and v generate
more neighbors than single attribute in each move. However,
cost evaluation is more efficiently by Equation 7 and MLib.
ΣEtask is the sum of the energy cost which is looked up by
voltage level and PE type in every task by mapping solution
and MLib. ΣEcomm is the sum of communication energy in
every communication task. In the specific communication task
transfer from functional taski to taskj, if PEi ≠ PEj, the energy
is obtained from MLib. Otherwise, the energy is 0 in the
communication task for transferring between the same
resource instance.

(6)
(7)

(8)

Our objective is to find a set of tabu bits (system architec-
ture) and scheduling to minimize Etotal in the time and
dependency constraints.

C. Neighbor Selection
The selection strategy of neighbors in each move is impor-

tant for searching efficiency. To efficiently reduce the number
selected neighbors, we use a fast timing analysis that drops
many impossible and unwanted solutions. A mapping solution
is generated as a neighbor from current solution must be tested
in the neighbor selection presented in the dash border of
Figure 4. Only the selected neighbors can be sent forward to

E total=∑ E task∑ E bus

tabu bits={res , vt1 , res , vt2 ,⋯, res , vtn}

Ebus C task i , task j
={E lib C task i , task j

∈MLib , if i≠ j
0,if i= j

}

Figure 4: Data flow of our approach

pipelined
schedule

end
Yes

generate initial
orders

Generate a
neighbor

MLib

find a feasible
initial solution

task
graph

ordering
pool

update solution
and tabu list

constraints

dynamic
bounding

pre-time
constraints

Tabu list aspiration
criteria

Intensification

drop the
neighbor

All
neighbor

generated?

Stop
Criteria

Yes

pipelined scheduling procedure. The neighbor solution pass
the scheduling will replace the best solution in the move.

Dynamic bounding drops the mapping worse than the best
solution passed the scheduling in this move. Since we select
only one neighbor that consume minimal energy (the local
optimal of the move) among the neighbors of the move. And
we can evaluate the cost of the mapping before scheduling.
We can drop the mapping solution never be the local optimal
solution.

Pre-timing constraints efficiently drops the impossible
mapping solution before scheduling. We use a fast timing
analysis from solution bits. The two attributes of a bit, the PE
mapping and voltage level mapping of functional nodes, are
known in each mapping solution. We can sum up execution
time of all functional nodes for each different PE instance. If
the sum of execution time in the same PE is larger than timing
constraint (stage time constraint), the mapping solution is
trivial to be dropped in this move and not be sent forward to
scheduling procedure.

The tabu list helps us to avoid falling into a local optimiza-
tion. In the process of tabu search, the current solution has
exactly one bit different between two continuous moves
except diversification and aspiration criteria is meet. A tabu
bit in the tabu list is the changed bit between previous and
current solution. The tabu list avoid the current solution being
the same as the attributes in the bits of tabu bits in next tabu
length move. The aspiration criteria gives a chance for neigh-
bors from tabu list with more strict rule. The cost of mapping
has to be smaller than the best solution in all moves until now.

Intensification will drop the mapping same as any local
optimal solution in previous moves. This mechanism prevents
the repeat solution and searching path.

D. Schedule Orderings Generating
The candidates of schedule ordering are generated by the

dependency relations of task graph, dramatically impacts the
scheduability of solutions. In a small task graph, we can cover
all possible orderings. But the number of possible orderings in
large application increase in the O(n!) complexity.

For the large case, the orderings will be randomly gener-
ated in limited Norder number of orderings pool for scheduling
all neighbors in tabu searching. The pool of ordering will be
dynamically replaced with the new and better orderings. The
Norder effects our searching time in linear time complexity.
However, a large Norder do not effect much in quality of
solution. A reasonable Norder number is chosen for high speed
and acceptable quality of solution will be discuss in our exper-
iments.

E. Pipeline Scheduling
The pipelined scheduler will check if the neighbor can be

scheduled in the ordering from the ordering pool. The
pipelined scheduler is a time-constrained LIST based
algorithm to decide the start time and end time of each nodes.
Since the mapping information is already contained in the bits
and orderings are assigned by the ordering pool, the scheduler
can schedule the nodes in a fast speed. However, the pipelined

issue should be considered while scheduling. The scheduler
will check that the scheduled interval of an functional nodes
is not overlapped with other nodes mapped onto the same
instance; or the interval of an communication node is not
overlapped with other communication nodes on the global
bus. If there are any two nodes overlapped on the same
instance or bus, the scheduler will try to delay the latter
overlapped node in order to find a slack to schedule the node.

Like Equation 8, from the dependency relations and
mapping information provided by solution bits, the scheduler
can decide the communication time Tbus in Equation 9. And
energy of communication Ebus has the similar formulation for
cost evaluation in tabu search.

(9)

We try each mapping that is performed neighbor selection
to schedule in all Norder orderings. If there is not any ordering
can make this neighbor be scheduled, we try the other new
Norder randomly generated orderings until there is an successful
ordering. In the best case, in totally 2Norder orderings being

T busC task i , task j
={T lib C taski , task j

∈MLib ,if i≠ j 
0, if i= j

}

 procedure schedule(mapping, ordering)
 begin

initial schd;
 foreach fn in mapping in order of ordering {

 foreach comm in fn.in_edge {
 schd[bus]←FirstFit(comm, schd[bus]);

 if(isFail(schd[bus])) return FAIL;
 }
 instance← mapping[fn].PEinst;

 schd[instance]←FirstFit(fn, schd[instance]);
 if(isFail(schd[instance])) return FAIL;
 }
return schd, mapping, ordering;

 }
end

 procedure Pipeline_Schedule
 begin
 initial current_solution← MAX;
 foreach mapping in selected_neighbors {
 if(current_solution.energy > mapping.energy) {
 foreach ordering in ordering_pool {

schd←schedule(mapping, ordering);
if(isSuccess(schd)) {
 update_pool(ordering_pool, ordering);

 current_solution ← mapping;
 return schd, mapping, ordering;
}

 }
 repeat 1.. Norder {
 new_ordering ← gen_new_ordering();
 schd←schedule(mapping, new_ordering);

if(isSuccess(schd)) {
 update_pool(ordering_pool, new_ordering);

 current_solution ← mapping;
 return schd, mapping, new_ordering;
}

 }
 return FAIL_MAPPING;
 } }
 end

Figure 5: The sudo code of pipeline scheduling

tested. The solution will be dropped after failed testing in all
orderings. Otherwise, the new successful ordering replaces
one of orderings in original Norder ordering pool and the tabu
search updates current solution with new solution. Figure 5
briefly describes our pipeline scheduling method. We sched-
ules each functional node fn in orderings from ordering pool.
There is second chance to schedule in other new random
ordering.

FirstFit procedure decides the start time in schd structure
by first-fit policy. It searches for the earliest time slot to fit the
inputed execution/communication time with dependency and
pipelined constraints in specified PE instance. In the
schedule procedure, the ordering is the ordering to schedule
the functional node, fn. We schedule all the preceding
communication nodes of functional nodes, fn.in_edge.
Finally, we schedule fn into the sched of mapped PEinst. If
there is any successful ordering in the mapping, we update
current solution and ordering pool to the successful mapping
and successful ordering, respectively. The updated
current_solution can skip scheduling some neighbors that do
not has the less cost than the cost of selected_neighbors in
this move, which mentioned in neighbor selection.

IV. EXPERIMENTAL RESULTS

The experiment list in Table 1 shows the performance of
our approach. All task graphs and resource libraries are gener-
ated by TGFF[14]. There are 2 different PEs supporting DVS
in our experiment. These experiments run on the AMD
opteron 2.0G MHz machine. We compare the quality with the
optimal solution solved by ILP [1].

 The node number tells how many functional nodes in the
task graph. Norder is the number of ordering in the pool.
Optimal power is obtained by ILP solver in the same system
model and objective as our tabu approach.

Note that Norder column and optimal power column with the
star notation in some cells. The Norder with single star use all
possible ordering. It is occurred in the small cases which has
fewer number of schedule ordering. For the huge time in ILP
model, the optimal power solution with double star did not
finish the ILP solving procedure. It may not be the real
optimal solution. In the very large cases, a feasible solution
may not be found in 4 hours. We note the optimal solution as
N/A for not available solution. But the solutions of ILP are all
run at least 4 hours. They are still good benchmarks to our
system.

We solve these problems in 800 moves in all experiments.
The run-time of our approach in tabu time column is in the
unit of seconds. It can be observed that the run-time is very
fast. In the experiment of 30 nodes case, we can solve it in 2
minutes. Moreover, the power difference shows the solution
quality will be better then ILP solutions solve in 4 hours. And
the difference will be noted with a negative number.

The second experiment shows the relation between Norder

and normalized average cost by the step of moves. Figure 6
shows the cost is decreased by the move number. The average
cost is converge near 600 moves. However, more Norder is not

always a better results. In fact, 100 is the best number among
50, 100 and 500 in our experiments. It tell us that don't use too
large Norder. A large Norder spends more run-time (linear
complexity) without better solution.

TABLE 1
EXPERIMENTAL RESULT LIST

node
number Norder

optimal
power

tabu
power

tabu
time

power
difference

4 *2 156 156 0.91 0

5 *8 193 193 1.34 0

6 *8 193 210 2.20 17

7 *11 **334 334 1.88 0

8 *28 **343 365 4.81 12

9 45 **503 503 7.76 0

10 50 **480 482 8.23 2

11 55 **553 562 11.30 9

12 60 **601 615 12.96 14

13 65 **752 702 17.41 -50

14 70 **957 839 20.42 -118

15 75 **930 823 18.37 -107

26 130 N/A 1538 96.26 N/A

27 135 N/A 1756 80.37 N/A

28 140 N/A 1746 95.11 N/A

29 145 N/A 2122 97.21 N/A

30 150 N/A 2056 113.13 N/A

Figure 6: average power consumption in diffrent Norder in 1500
moves

Norder=50
Norder=100
Norder=500

Moves

N
or

m
al

iz
ed

 a
ve

ra
ge

 c
os

t

V. CONCLUSION

An efficient approach to explore the system design parame-
ters including PE mapping, voltage mapping and pipeline
scheduling by tabu search method is proposed in this paper. In
the experiment results, we compare the solution with ILP-
based approach. It shows an excellent performance end high
quality solution in our approach. And provide a dynamic
ordering pool to maintain the good schedule ordering. Finally,
we analysis the trade-off between run-time and solution
quality in moves count and Norder .

ACKNOWLEDGMENT

This work was supported in part by the National Science
Council, R.O.C., under Grant NSC 95-2221-E-110-017

REFERENCES

[1] J. L. Liu, S. R. Kuang and S. F. Hsiao, “Integrated Architecture
Synthesis of Distributed Embedded Systems for Multimedia
Applications” in Proc. International Computer Symposium pp. 224-229,
2006.

[2] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors,” in Proc. Int. Symp. on Low
Power Electronics and Design, pp. 197–202, 1998.

[3] W.-C Kwon and T.-W Kim: ‘Optimal Voltage Allocation Techniques for
Dynamically Variable Voltage Processors ’, ACM Transactions on
Embedded Computing Systems, Vol. 4,No 1, February, 2005, Pages 211-
230

[4] R. Niemann and P. Marwedel, “An algorithm for hardware/software
partitioning using mixed integer linear programming,” in Proc. Design
Automation for Embedded Systems, vol. 2, pp. 165–193, March 1997.

[5] H. Liu and D. F. Wong, “Integrated partitioning and scheduling for
hardware/software co-design,” in Proc. International Conference on
Computer Design: VLSI in Computers and Processors, pp. 609–614,
Oct. 1998.

[6] S. Banerjee and N. Dutt, “Efficient search space exploration for HW-SW
partitioning,” in Proc. Int. Conf. on Hardware/Software Codesign and
System Synthesis, pp. 122–127, 2004.

[7] S. Porto and C. Ribeiro: “A Tabu search Approach to Task Scheduling
on Heterogeneous Processors under Precedence Constraints”,
International Journal of High Speed Computing, , Vol. 7, No. 1, pp. 45-
71, 1995

[8] T. Wiangtong, P. Y. K. Cheung and W. Luk “Comparing Three Heuristic
Search Methods for Functional Partitioning in Hardware–Software
Codesign” Journal of Design Automation for Embedded Systems,
Volume 6, Number 4, pp. 425-449, 2002

[9] S. Bakshi and D. D. Gajski, “Partitioning and pipelining for
performance-constrained hardware/software systems,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., Vol. 7, No. 4, pp. 419–432, 1999.

[10] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-
software co-synthesis of heterogeneous distributed embedded systems,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 7, No. 1, pp. 92–
104, 1999.

[11] K. S. Chatha and R. Vemuri, “Hardware-software partitioning and
pipelined scheduling of transformative applications,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., Vol. 10, No. 3, pp. 193–208, 2002.

[12] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “Energy-efficient
mapping and scheduling for DVS enabled distributed embedded
systems,” in Proc. Design, automation and test in Europe Conf., pp.
514–521, March 2002.

[13] T. Hagras, J. Janeček 'A High Performance, Low Complexity Algorithm
for Compile-Time Task Scheduling in Heterogeneous Systems' Proc.
Int. Symp. on Parallel and Distributed Processing, Vol. 31, No. 7 pp.
653 - 670 , 2005

[14] TGFF http:// ziyang.ece.northwestern.edu /tgff/

[15] F. Glover, M. Laguna “Tabu Search”Kluwer Academic Publishers, 1997

http://ziyang.ece.northwestern.edu/tgff/
http://ziyang.ece.northwestern.edu/tgff/
http://ziyang.ece.northwestern.edu/tgff/
http://ziyang.ece.northwestern.edu/tgff/
http://ziyang.ece.northwestern.edu/tgff/
http://ziyang.ece.northwestern.edu/tgff/
http://ziyang.ece.northwestern.edu/tgff/
http://ziyang.ece.northwestern.edu/tgff/
http://ziyang.ece.northwestern.edu/tgff/

