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Abstract— 

An tabu search based approach for distributed embedded sys-
tems synthesis is  presented in this paper.   This approach maps 
each computation task of a particular application onto a system 
component with multiple supply voltages, schedules the execution 
of  these  computation  tasks and communication  time  of  global 
shared bus into pipeline stages. The objective is to minimize the 
total power consumption subject to the  throughput constraint on 
the  pipelined  system  architecture.  The  results  of  experiments 
show a very good performance to obtain the near-optimal solu-
tion  compared  with  global  optimal  solution  obtained  by 
ILP(Integer Linear Programming) approach [1] and analysis the 
number  of  orderings  in  ordering  pool  to  trade-off  speed  and 
quality of solution.

I. INTRODUCTION

Multimedia  and  wireless  devices  typically  have  intensive 
computations  and  an  endless  stream  of  input  data  with 
throughput constraints. Most of these devices are designed for 
portable  applications,  demanding  for  low-power  and  high-
performance is greatly growing. But there are many  trade-off 
between low-power and performance. System synthesis with 
power  optimization  try  to  solve  the  design  problem  which 
meet  the  timing  constraints.  The  problem involves  various 
steps  such  as  mapping,  scheduling,  and dynamic  voltage 
scaling. All  step are  highly complex and dependent to each 
other. For example, scheduling cannot be performed without 
the execution time of computation tasks, which are available 
only after PE instances  and supply voltages  being selected. 
And the voltage selection problem must be considered simul-
taneously to trade-off  performance and power consumption. 
We try to develop an integrated approach to cope with these 
design steps simultaneously. 

The work in [2] presents a power-delay model to show that 
dynamic  voltage  scaling(DVS)  can  provide  drastic  power 
reduction.  For  given  multiple  discrete  supply  voltages  and 
sequential  tasks  with  arbitrary  time  constraints,  a  voltage 
assignment technique which produces a feasible task schedule 
with optimal processor energy consumption. [3] provide the 
optimal  voltage  allocation  model  with  add-on  non-uniform 
load  capacitances model.

 The  system  synthesis  problem composite  of  scheduling 
and  mapping  problem  together.  Except  for  the  optimal 
approaches [4,  5],  various  heuristic  approaches  including 
iterative improvement,  constructive method, such as genetic 
algorithm, simulated annealing and tabu search [7] have been 

used  to  synthesize  system  architectures.  In  these  three 
algorithm,  tabu search provide a solution quality in a short 
time[6].  However,  all  these  approaches  mentioned  so  far 
assume  that  the  computation  tasks  in  the  system  execute 
sequentially so that they cannot construct efficient pipelined 
architecture for stream applications. In contrast, [9]–[11] have 
proposed approaches to build the pipelined system architec-
ture. 

Schmitz [12] have demonstrated the efficiency of system 
architecture  synthesis  with  DVS  technique  in  reducing  the 
power  consumption.  But  it  did  not  perform  pipelined 
scheduling  in  the  system.  Our  approach  is  based  on  tabu 
search that  minimizes  the  total  power  consumption  of 
pipelined  system  architecture including  DVS  components 
under   throughput  constraints.  All  of  mapping,  pipelined 
scheduling, and voltage selection are considered.

The  remainder  of  this  paper  is  organized  as  follows. 
Section  2  describes  the  integrated  system  architecture 
synthesis problem of distributed embedded systems for multi-
media applications. Section 3 explains our algorithm to solve 
the  integrated  problem.  Section  4  applies  the  proposed 
approach to  some  examples  and discusses  the experimental 
results. Finally, we give a conclusion.

II. PROBLEM DESCRIPTION

A. Task Graph
Typically multimedia applications are dominated by data-

flow constructs  and  can  be  described  as  a  task  graph  at  a 
coarse level of granularity. It may be simplified as an pure, 
non-hierarchical data-flow computation nodes and communi-
cation nodes,and each node is executed the same number of 
times.  This  is  a  very  restricted  semantic  but  useful  in 
streaming application, the most execution time is spent on the 
inner loop, called computation kernel. And we focus on the 
repeat behavior of computation kernel in streaming applica-
tion.

We extract the computation kernel as the task graph  G(V, 
E, I, O), a directed acyclic graph, where  V denotes a set of 
functional nodes and E denotes a set of communication edges. 
Moreover,  I and  O are  dummy nodes  called  the  input  and 
output nodes which are used to model the I/O environment 
and specify the throughput constraint.  Fi ∈ V is a functional 
node  and  Cn(Fi1,  Fi2)  ∈ E is  a  communication  edge  from 
source functional node  Fi1 to destination functional node Fi2. 
For the dependency relation in G, the functional node should 



be activated  after  all its  input  edges are  finished.  And the 
output edges cannot be activated until  the source functional 
node is finished. Considering the task graph depicted in Figure 
1, C2 and C3 can be activated after I is finished, and F3 cannot 
be activated until both C4 and C3 are finished.

B.  Target Architecture
A distributed embedded system today usually consists  of 

multiple  heterogeneous resources  (uPs,  DSPs,  ASICs,  etc.), 
memory components, communication networks and communi-
cation interfaces. For the communication network, an on-chip 
shared bus is adopted in our target architecture. In addition, 
each component contains a buffer in order to temporarily store 
the data from/to communication link. For the buffering model, 
the out-going data can be transferred in the later time after 
finishing  computation  and  the  incoming  data  can  be  held 
before computation. Therefore, the scheduling is more flexible 
and the communication will affect less on the scheduling of 
PEs.

An example of target architecture, which consists of four 
PEs,  one  system  bus   is  shown  in  Figure  2.  Moreover, 
distributed  PEs  provide  more  power-saving  opportunities. 
More  independent  PEs share  these  functional  nodes,  more 
slack time exists. As a result, the execution time of functional 
nodes may be extended in lower voltage level.

C. Pipeline Scheduling
For the  repeated  nature  of  stream applications,  pipelined 

scheduling benefits the performance if  there are enough PE 
resources.  Pipelined  scheduling  also  works  in  the  system 
design  low power  system  in  throughput  constraint.  Depen-
dency constraints could be resolved in pipelined stages. There 
are more opportunities to place longer execution time in lower 
voltage and to find a mapping that has less communication 
time. 

The throughput constraint is the period of two consecutive 
input  samples.  Figure  3 depicts  a  two-stage  pipelined 
scheduling in 120 throughput constraint. Communication and 

computation  nodes are  repeatedly  executed  on  assigned  PE 
instance.

Figure 3: An example of pipelined scheduling

D.  Dynamic Voltage Scaling
The  DVS  supported  PE  dynamically  scales  the  supply 

voltage  and  operational  frequency  in  accordance  with  the 
performance requirements of the applications to reduce power 
consumption. For preceding restrictions among tasks and the 
throughput constraint, there are many idle time slot distributed 
in each components. However, to execute a task in the lower 
voltage in DVS-enabled PEs consumes less energy and spends 
longer execution time than higher voltage. The energy-delay 
model in DVS components is shown as flowing Equation 1-5 :

(1)

(2)

(3)

(4)

(5)

Equation 3 is derive by Equation 1 and 2. where  PVdd  and 
TVdd  denotes operational power and execution time of a task 
mapped onto  a  specific  PE in  Vdd voltage.  Vth  is  threshold 
voltage  a  PE corresponding the manufacture characteristics. 
We can evaluate the EVdd+∆v and TVdd+∆v by Equation 3, 4 and 5 
in the difference voltage ∆v. 

Based on the above explanation, the problem of integrated 
system architecture synthesis for embedded streaming applica-
tions can be described as follows. Given a task graph G(V, E, 
I, O), a resource library with the corresponding implementa-
tion information including PE’s execution time,  PE's power 
consumption, communication time, communication energy on 
each communication node, a throughput constraint and stage 
number constraint , the problem is to (1)map each Fi ∈ V to a 
PE instance run at a feasible voltage to execute its function; 
(2)schedule function computation and data communication in 
pipeline; (3)assign each Cn(Fi1, Fi2)∈E to an internal commu-
nication, or the shared system bus; such that (4)the throughput 
constraint,  stage  number  constraints  are  satisfied;  (5)total 
power consumption are minimized.

Figure 1: An example of task graph
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Figure 2: An example of target architecture
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III. ALGORITHM

Our  approach  simultaneously  determines  PE  instance 
mapping, voltage mode and pipelined scheduling for all nodes 
of application solved by the tabu search.

Tabu  search[15]  is  an  adaptive  procedure  for  solving 
complex optimization problems.  The solution is  encoded as 
bits.  Neighbors  are  generated  from  all  solutions  that  are 
exactly one bit different from initial solution in the first move 
or  current  solution  (the  local  optimal  solution  in  the  last 
move). But not all solutions are admissible, such as tabu list 
and  intensification  avoid  some  neighbors  being  a  current 
solution in the move. In the progress of searching, the local 
local  optimal  solution  in  the  admissible  neighbors  in  each 
move will be found out by burst force and the global optimal 
solution will be improved by best current solution. 

Tabu search can solve variable complex problems. In our 
proposed algorithm, we modified tabu search and a pipelined 
scheduling  to  solve  the  system architecture  and  scheduling 
problem that we mentioned in the section 2. We explain our 
system in detail as follows.

A. Tabu Search for Low Power in Distributed Embed System
There  are  two  major  procedures  in  proposed  synthesis 

system. One is the modified tabu search designed for solving 
the  mapping  problem  (PE  instance  mapping  and  voltage 
mapping). The other is the pipelined scheduling to schedule 
all  selected  neighbors  from  tabu  search.  For  the  pipelined 
scheduling is most time-consuming procedure, a fast neighbor 
filter  is  designed  to  drop  bad   neighbor  mappings  while 
generating  neighbors.  Finally,  the  acceptable  neighbor 
mappings in the move have to get a schedule ordering to be 
scheduled in pipelining, and the system drops the neighbors 
that  can  not  be  scheduled.  The  diversification  try  to  find 
another current solution if the cost of current solution is the 
same  for  several  moves.  And  the  diversification  helps  the 
system for finding a new searching path in order to escape the 
local optimal solution.

Figure 4 presents an overview of the synthesis system. The 
initial solution is decided by CNPT [13] after preprocessing 
the input data. We do not apply voltage optimization on initial 
solution with CNPT and voltage level of all tasks are assigned 
at maximal voltage level. However, CNPT is a efficient start 
point to find a feasible PE instance mapping.

A flow chart of our approach is shown in Figure 4. The fat 
arrows  indicate the constant data generated once at the start-
up  procedure.  There  are  four  user-defined  constant  data  as 
input in our system: (1)Task graph describes the application 
by  functional  nodes,  communication  nodes,  data 
dependencies, and stage time constraint, (2)MLib provides the 
energy  cost  and execution  time  of  each  functional  node  at 
different  voltage  modes.  The  execution  time and energy  of 
communication  node  are also  listed  in  MLib,  and 
(3)constraints  of  pipelined  scheduling  and  tabu  search.  All 
above data is prepared before performing tabu search. 

B. Encoding of   Neighbors and Cost Function

 The set  of  tabu bits,  a  mapping solution,  is  encoded as 
voltage  level  v and  PE  instance  res together  in  a  corre-
sponding  functional  task,  from  task  1  to  task  n,  shown in 
Equation 6. The two composite attributes,  res and v generate 
more neighbors than single attribute in each move. However, 
cost evaluation is more efficiently by  Equation 7 and MLib. 
ΣEtask is  the sum of the energy cost  which is  looked up by 
voltage level and PE type in every task by mapping solution 
and  MLib.  ΣEcomm is  the  sum  of  communication  energy  in 
every communication task. In the specific communication task 
transfer from functional taski to taskj, if PEi ≠ PEj, the energy 
is  obtained  from  MLib.  Otherwise,  the  energy  is  0  in  the 
communication  task  for  transferring  between  the  same 
resource instance.

(6)
(7)

(8)

Our objective is to find a set of tabu bits (system architec-
ture)  and  scheduling  to  minimize  Etotal in  the  time  and 
dependency constraints.

C. Neighbor Selection
The selection strategy of neighbors in each move is impor-

tant for searching efficiency. To efficiently reduce the number 
selected neighbors,  we use a fast  timing analysis  that drops 
many impossible and unwanted solutions. A mapping solution 
is generated as a neighbor from current solution must be tested 
in  the  neighbor  selection  presented  in  the  dash  border  of 
Figure 4. Only the selected neighbors can be sent forward to 

E total=∑ E task∑ E bus

tabu bits={res , vt1 , res , vt2 ,⋯, res , vtn}

Ebus C task i , task j
={E lib C task i , task j

∈MLib , if i≠ j
0,if i= j

}

Figure 4: Data flow of our approach
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pipelined  scheduling  procedure.  The  neighbor  solution  pass 
the scheduling will replace the best solution in the move.

Dynamic bounding drops the mapping worse than the best 
solution passed the scheduling in this move. Since we select 
only  one  neighbor  that  consume minimal  energy  (the  local 
optimal of the move) among the neighbors of the move. And 
we can evaluate the cost of the mapping before scheduling. 
We can drop the mapping solution never be the local optimal 
solution.

Pre-timing  constraints  efficiently  drops  the  impossible 
mapping  solution  before  scheduling.  We  use  a  fast  timing 
analysis from solution bits. The two attributes of a bit, the PE 
mapping and voltage level mapping of functional nodes, are 
known in each mapping solution. We can sum up execution 
time of all functional nodes for each different PE instance. If 
the sum of execution time in the same PE is larger than timing 
constraint  (stage  time  constraint),  the  mapping  solution  is 
trivial to be dropped in this move and not be sent forward to 
scheduling procedure.

The tabu list helps us to avoid falling into a local optimiza-
tion.  In the process of tabu search, the current solution has 
exactly  one  bit  different  between  two  continuous  moves 
except diversification and aspiration criteria is meet. A tabu 
bit  in the tabu list  is  the changed bit  between previous and 
current solution. The tabu list avoid the current solution being 
the same as the attributes in the bits of tabu bits in next tabu 
length move. The aspiration criteria gives a chance for neigh-
bors from tabu list with more strict rule. The cost of mapping 
has to be smaller than the best solution in all moves until now.

Intensification  will  drop  the  mapping  same  as  any  local 
optimal solution in previous moves. This mechanism  prevents 
the repeat solution and searching path.

D. Schedule Orderings Generating
The candidates of schedule ordering  are  generated by  the 

dependency relations of  task graph, dramatically impacts the 
scheduability of solutions. In a small task graph, we can cover 
all possible orderings. But the number of possible orderings in 
large application increase in the O(n!) complexity.

For the large case, the orderings will be randomly gener-
ated in limited Norder number of orderings pool for scheduling 
all neighbors in tabu searching. The pool of ordering will be 
dynamically replaced with the new and better orderings. The 
Norder effects  our  searching  time  in  linear  time  complexity. 
However,  a  large  Norder do  not  effect  much  in  quality  of 
solution. A reasonable Norder number is chosen for high speed 
and acceptable quality of solution will be discuss in our exper-
iments.

E. Pipeline Scheduling
The pipelined scheduler will check if the  neighbor can be 

scheduled  in  the  ordering  from  the  ordering  pool.  The 
pipelined  scheduler  is  a  time-constrained  LIST  based 
algorithm to decide the start time and end time of each nodes. 
Since the mapping information is already contained in the bits 
and orderings are assigned by the ordering pool, the scheduler 
can schedule the nodes in a fast speed. However, the pipelined 

issue should be considered while scheduling.  The scheduler 
will check that the scheduled interval of an functional nodes 
is  not  overlapped  with  other  nodes  mapped  onto  the  same 
instance;  or  the  interval  of  an  communication  node  is  not 
overlapped  with  other  communication  nodes  on  the  global 
bus.  If  there  are  any  two  nodes  overlapped  on  the  same 
instance  or  bus,  the  scheduler  will  try  to  delay  the  latter 
overlapped node in order to find a slack to schedule the node.

Like  Equation  8,  from  the  dependency  relations  and 
mapping information provided by solution bits, the scheduler 
can decide the communication time  Tbus in Equation 9. And 
energy of communication Ebus has the similar formulation for 
cost evaluation in tabu search.

(9)

We try each mapping that is performed neighbor selection 
to schedule in all  Norder  orderings. If there is not any ordering 
can make this neighbor be scheduled, we try the other new 
Norder randomly generated orderings until there is an successful 
ordering.  In the  best  case,  in  totally  2Norder orderings  being 

T busC task i , task j
={T lib C taski , task j

∈MLib ,if i≠ j 
0, if i= j

}

 procedure schedule(mapping, ordering)
 begin

initial schd;
   foreach fn in mapping  in order of ordering {

       foreach comm in  fn.in_edge {
           schd[bus]←FirstFit(comm, schd[bus]);

                           if(isFail(schd[bus]) ) return FAIL;
       }
       instance← mapping[fn].PEinst;

            schd[instance]←FirstFit(fn, schd[instance]);
       if(isFail(schd[instance] ) ) return FAIL;
  }
return schd, mapping, ordering;

            }
end

 procedure Pipeline_Schedule
 begin
     initial current_solution← MAX;
     foreach mapping  in selected_neighbors {
            if(current_solution.energy > mapping.energy) {
        foreach ordering in ordering_pool {

schd←schedule(mapping, ordering);
if(isSuccess(schd) ) {
   update_pool(ordering_pool, ordering);

                   current_solution ← mapping;
   return schd, mapping, ordering;
}

            }
            repeat 1.. Norder {
               new_ordering ← gen_new_ordering();
 schd←schedule(mapping, new_ordering);

if(isSuccess(schd) ) {
   update_pool(ordering_pool, new_ordering);

                   current_solution ← mapping;
   return schd, mapping, new_ordering;
}

            }
          return FAIL_MAPPING;
         } }
 end

Figure 5: The sudo code of pipeline scheduling



tested. The solution will be dropped after failed testing in all 
orderings.  Otherwise,  the  new  successful  ordering  replaces 
one of orderings in original  Norder ordering pool and the tabu 
search updates current solution with new solution.  Figure  5 
briefly describes our pipeline scheduling  method. We sched-
ules each functional node fn in orderings from ordering pool. 
There  is  second  chance  to  schedule  in  other  new  random 
ordering.

FirstFit procedure decides the start time in  schd structure 
by first-fit policy. It searches for the earliest time slot to fit the 
inputed execution/communication time  with dependency and 
pipelined  constraints  in  specified  PE  instance.  In  the 
schedule procedure, the ordering  is the ordering to schedule 
the  functional  node,  fn. We  schedule  all  the  preceding 
communication  nodes  of  functional  nodes,  fn.in_edge. 
Finally, we schedule fn into the sched of mapped PEinst. If 
there is  any successful  ordering in the mapping,  we update 
current solution and ordering pool to the successful mapping 
and  successful  ordering,  respectively.  The  updated 
current_solution can skip scheduling some neighbors that do 
not has the less cost  than the cost of selected_neighbors in 
this move, which mentioned in neighbor selection.

IV.  EXPERIMENTAL RESULTS

The experiment  list in Table 1 shows  the performance of 
our approach. All task graphs and resource libraries are gener-
ated by TGFF[14]. There are 2 different PEs supporting DVS 
in  our   experiment.  These  experiments  run  on  the  AMD 
opteron 2.0G MHz machine. We compare the quality with the 
optimal solution solved by ILP [1].

 The node number tells how many functional nodes in the 
task  graph.  Norder is  the  number  of  ordering  in  the  pool. 
Optimal power is obtained by ILP solver in the same system 
model and objective as our tabu approach. 

Note that Norder column and optimal power column with the 
star notation in some cells. The Norder with single star use all 
possible ordering. It is occurred in the small cases which has 
fewer number of schedule ordering. For the huge time in ILP 
model,  the optimal  power solution with double star  did not 
finish  the  ILP  solving  procedure.  It  may  not  be  the  real 
optimal solution.  In the very large cases, a feasible solution 
may not be found in 4 hours. We note the optimal solution as 
N/A for not available solution. But the solutions of ILP are all 
run at least  4 hours.  They are  still  good benchmarks to our 
system.

We solve these problems in 800 moves in all experiments. 
The run-time of our approach in tabu time column is in the 
unit of seconds. It can be observed that the run-time is very 
fast. In the experiment of 30 nodes case, we can solve it in 2 
minutes. Moreover, the power difference shows the solution 
quality will be better then ILP solutions solve in 4 hours. And 
the difference will be noted with a negative number.

The second experiment  shows the relation between  Norder 

and normalized average cost by the step of moves.  Figure  6 
shows the cost is decreased by the move number. The average 
cost is converge near 600 moves. However, more Norder  is not 

always a better results. In fact, 100 is the best  number among 
50, 100 and 500 in our experiments. It tell us that don't use too 
large  Norder.  A  large  Norder spends  more  run-time  (linear 
complexity) without better solution.

TABLE 1
EXPERIMENTAL RESULT LIST

node 
number Norder

optimal 
power

tabu 
power

tabu 
time

power 
difference

4 *2 156 156 0.91 0

5 *8 193 193 1.34 0

6 *8 193 210 2.20 17

7 *11 **334 334 1.88 0

8 *28 **343 365 4.81 12

9 45 **503 503 7.76 0

10 50 **480 482 8.23 2

11 55 **553 562 11.30 9

12 60 **601 615 12.96 14

13 65 **752 702 17.41 -50

14 70 **957 839 20.42 -118

15 75 **930 823 18.37 -107

26 130 N/A 1538 96.26 N/A

27 135 N/A 1756 80.37 N/A

28 140 N/A 1746 95.11 N/A

29 145 N/A 2122 97.21 N/A

30 150 N/A 2056 113.13 N/A

Figure  6:  average  power  consumption  in  diffrent  Norder in  1500 
moves
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V. CONCLUSION

An efficient approach to explore the system design parame-
ters  including  PE  mapping,  voltage  mapping  and  pipeline 
scheduling by tabu search method is proposed in this paper. In 
the  experiment  results,  we  compare  the  solution  with  ILP-
based approach. It shows an excellent performance end high 
quality  solution  in  our  approach.  And  provide  a  dynamic 
ordering pool to maintain the good schedule ordering. Finally, 
we  analysis  the  trade-off  between  run-time  and  solution 
quality in moves count and Norder . 
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