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ABSTRACT 
In this paper, a supervised parallel approach called CMAC (Cerebellar Model Arithmetic 

Computer) neural network with an Annealed Chaotic Learning (CMAC-ACL) scheme is proposed to 
characters recognition. The CMAC has many advantages in terms of speed of operation based on LMS 
training, its ability to realize arbitrary nonlinear mapping, and a fast practical hardware implementation. 
The CMAC can rapidly obtain output using a nonlinear mapping with look-up table memory to replace 
the complex learning process with mathematic functions. Additionally, an annealed chaotic learning 
scheme was embedded to escape from local minima and approach the global minimal solution. The 
proposed CMAC-ACL was applied to the character recognition in this paper. In the experimental 
results, the proposed CMAC-ACL has shown that it can clearly distinguish 94 characters in a keyboard 
with a size of 88×  pixels, even though some noise pixels are added in a character. 
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1. INTRODUCTION 

Character recognition is one of the interesting pattern recognition problems in 
pattern recognition theory and applications, especially in handwriting character 
recognition (Geng, Zhang & Shen, 2007). Although a lot of strategies have been 
proposed, the character recognition problem is not completly solved. Several 
approaches including feature extraction and study reasoning have been applied to 
this problem (Wang, Yang, Li, Dai & Xie, 2007). Feature extraction deals with 
pattern matching while the study reasoning generally involves a neural network, 
knowledge-based and other artificial intelligence models. The proposed 
CMAC-ACL approach is based on the study reasoning. Wang et al. (2007) 
indicated that it is not easy to construct an optimal back-propagation (BP) network 
because there is no theory criterion on how to guide the choice of the amount of 
both the hidden layer and neuron of each layer, which mostly depends on a 
person’s experience. Therefore, they used a discrete Hopfield neural network to 
remove the noise among the samples and associate the samples. In the applications 
of BP or Hopfield networks, they were always easily trapped in a local minimum 
solution. In addition, they also consumed computation time in the training and 
processing iterations. 

In 1969, Marr proposed a cerebellar cortex bio-model. In the 1970s Albus 
(1971, 1972, 1975a, 1975b) created the first mathematical model for a cerebellar 
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cortex, called the Cerebellar Model Arithmetic Computer - CMAC. The CMAC is 
similar to multi-perceptron based on associative memory with a multi-dimensional 
nonlinear learning ability. It has also been applied to many fields such as function 
approximation, pattern recognition, and robotic control. Albus used CMAC to 
perform rote learning of movements of an artificial arm. The CMAC was not only 
practical, but it could also be used to learn general state space dependent system 
responses. Albus (1975) noted that CMAC could train and process the weights in 
the storage of CMAC with fewer iterations. We employed an annealed chaotic 
learning scheme to approach a global or near-global minimum solution. Miller 
(1986a, 1986b, 1987, 1989a, 1989b) and Miller, Glanz & Kraft (1990) used CMAC 
for the control of robotic manipulation and signal processing. Ersu and Tolle (1988, 
1989) discussed learning control with associative memories. Kolcz and Allinson 
(1994) used CMAC for the input encoding scheme in an N-tuple approximation 
network. 

In this paper a chaotic mechanism with annealing strategy is introduced into 
the CMAC neural network to construct CMAC-ACL, with the expectation of a 
better opportunity for converging on an optimal solution. Chaotic learning schemes 
have a nonlinear recursive equation with features to display the rich range of 
behavior. It can escape from local minima and converge to the global-minimum or 
near-global-minimum result. The study of chaotic learning scheme is important not 
only as a model for nonlinear systems with many degrees of freedom, but also from 
the viewpoint of biological information processing and possibly also for 
engineering applications (Lin, 2001). Several chaotic neural networks have been 
proposed in the past (Lin, 2001, 2002; Lin, Tsai & Lee, 2001). Lin (2001, 2002) 
proposed an annealed chaotic Hopfield network to interpolate a vector quantizer 
system and to apply to clustering problems. An annealed chaotic scheme was 
embedded into Hopfield network so as to obtain near-global results. Lin et al., 
(2001) presented an annealed chaotic competitive learning network with nonlinear 
self-feedback for the application of edge detection. 

2. THE CMAC ARCHITECTURE 

The CMAC is a supervised neural network using a special kind of nonlinear 
mapping in the input variable encoding. The code is generated by transforming an 
S-dimensional input vector space into a P-dimensional address space, where P is an 
arbitrarily chosen association coefficient. The coefficient is the major parameter of 
the CMAC architecture and responds to its generalization properties. A standard 
CMAC architecture can be defined by Equations (1) and (2) to map S-dimensional 
input vector space into a P-dimensional address space with a nonlinear function 
defined as Equation (3): 

,: AXS ⇒  (1) 
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,: YAP ⇒  (2) 

)(xfY = . (3) 

In the architecture of CMAC, X and A are continuous S-dimensional input 
space and N-dimensional co-relational space respectively. In function S (x), a 
pattern x in the input space is mapped into the co-relational vector a = S (x)∈A, 
where A occupies N non-zero elements. The output of the traditional CMAC can be 
defined as  
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The CMAC algorithm can generate an approximating solution using the input 
vector in the characteristic plane. An input vector is the collection of N appropriate 
sensors of the real word and/or measures of the desired goal. The input space 
consists of the set of all possible input vectors. In a control system the control 
signal can be estimated in accordance with recent and next states. The characteristic 
plane estimates and divides the results then stores them in discontinuous memories 
in accordance with input vectors if the system parameter is known, while the 
learning processing is rapidly done by the CMAC algorithm according to the input 
and output vectors if the system parameter is unknown. A robust and easy strategy 
to solve the learning processing in the CMAC is to use the delta learning rule to 
iteratively modify the characteristic values (or weights) stored in the memory.  

If two training vectors are close an input space will result in overlap in the A 
memory during the training phase while there will be no overlap in the A memory 
if two inputs are far apart in the input space. The input space is extremely large for 
practical applications; the CMAC requires a large number of sizes in the memory A. 
Since most learning schemes do not involve all the input space, the memory 
requirement is reduced by mapping the A memory onto a much smaller physical 
memory W. 

The CMAC network consists of m-bits of input pattern to respond to m 
sampling signals. Then these signals are encoded to quantize into n clusters in 
which a cluster is represented by b bits. That is m = n × b. The output occupies 
k-layer parallel memories to memorize k characters. Therefore, a test pattern can be 
directly sent to an input layer then encoded and quantized to the excite weights in 
proper memories. Finally, a summation can be outputted by the exciting address. In 
the training phase, the weight in the ith address is excited and updated as well as 
the memories of all layers to obtain outputs for all objects in the recognition 
process. If an output value “1” represents the input vector being recognized, the 
CMAC can identify the input object with supervised learning. The weights stored 
in memory can be updated with the steeping descent rule as follows: 

)()()1( ,,, twtwtw ikjikjikj Δ+=+ η  (5) 
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where 
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And the j-th output was calculated as 
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where E, η, yd, and y are the error function, learning rate, expected output, and 
existent output respectively.  

3. CMAC WITH ANNEALED CHAOTIC LEARNING (CMAC-ACL) 
SCHEME 

In the optimization problem, most systems implement the straight forward 
algorithm that easily traps into a local minimum. In order to solve this problem, 
several systems used annealing algorithms to move temporarily toward a worse 
state so as to escape from local traps; that is to go from one state to another with a 
non-zero probability. The probability function depends on the temperature and the 
energy difference between the last two states. With the probabilistic hill-climbing 
search approach, a simulated annealing technique has a better probability of going 
to a higher energy state at a higher temperature. A chaotic learning scheme has a 
nonlinear recursive equation that features a rich range of behaviors. In other words, 
the chaotic learning scheme has rich dynamics with various coexisting attractors, 
not only of fixed points but also of periodic and even chaotic attractors. 

In this paper, a CMAC neural network embedded with the Feigenbaum’s 
bifurcation formula and self-feedback connection weight, named CMAC-ACL and 
shown as in Figure 1, was constructed with the ability of a parallel synchronous 
computation in the bifurcation states. For the conventional CMAC each 
interconnection-strength is directly connected from memory storage to output layer 
while the interconnection-strength occupies 2 states, known as internal state and 
transient state, which are trained with the chaotic dynamic of self-feedback 
bifurcation in the proposed CMAC-ACL. The weights stored in memory were also 
updated with the steeping descent rule with a small learning-rate parameter. 
Therefore, the model of the proposed CMAC-ACL can be demonstrated as follows: 

)()()1( ,,, twtwtw ikjikjikj Δ+=+ η  (8) 

where 
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And the j-th output was calculated as 
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and  

[ ] TtutEtvtv ikjikjikj )()()(sin)1( ,,, −+=+ πδ  (12) 

where 

E = error function, 
uj, ik = transient state of the interconnection strength between the memory (i, k) 

and output neuron j, 
vj, ik = internal state of the interconnection strength between the memory (i, k) 

and output neuron j, 
wj, ik = weight stored in the memory (i, k) for output neuron j, 
yj = output of neuron j in the output layer, 
yd = expected output value, 
η = learning rate, 
δ = damping factor of nerve membrane ( ≤ δ ≤ 1 ), 
T = self-feedback connection weight, 
λ = stepness parameter of the output function ( λ > 0 ), 
π = ratio of the circumference of a circle to its diameter, 
P = maximum value of cluster, 
C = maximum value of class. 

To show the chaotic dynamics of an interconnection strength with distinct 
self-feedback connection weight for chaotic learning, the values were set to be the 
same as the reference (Lin, 2002). The transient state u (t) was also gradually 
transient from chaotic characteristics through periodic bifurcation to an equilibrium 
point ( 0399.0=T ) while T < 0.08. That is the chaotic behavior was not easily 
harnessed by a value of the self-feedback connection weight in a chaotic neuron. 
Although a chaotic neural network is a promising technique for optimization 
problems, the converging process has not been satisfactorily solved in relation to 
chaotic dynamics. It is difficult to decide how to control the chaotic behavior in a 
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chaotic neuron for convergence to a stable equilibrium point corresponding to an 
acceptably near-optimal solution. In order to control the chaotic dynamical 
mechanism, an annealed strategy is embedded into the chaotic learning scheme of 
the proposed CMAC-ACL, with the expectation of a better opportunity for 
converging to the optimal solution. Differing from the conventional stochastic 
simulated annealing, the annealed chaotic learning is a deterministic optimizer that 
converges from a chaotic state at a high temperature through successive 
bifurcations during a temperature reducing process to an equilibrium point at low 
temperature. Therefore, self-feedback connection weight T defined in the internal 
state of the interconnection strength can be replaced by the cooling schedule with 
an iteratively decreasing temperature T (t), as proposed by the author (Lin, 2002) 
and presented in Equation (13), to harness the chaotic dynamics: 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The proposed CMAC-ACL network and its interconnection-strength 
architecture. 

[ ] )()tanh(
1

1)1( 1 tTtT t++
+

=+ αβ
β

 (13) 

where α is a constant ranging for 0.8 to 1 and β is also a constant. Therefore, the 
self-feedback connection weight of the internal state T in Equation (12) would be 
replaced by the decreasing temperature T (t) defined by Equation (13) and 
demonstrated as follows: 
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where I0 is a positive parameter. The chaotic dynamics in an interconnection 
strength can be shown as in Figure 2 with setting the value of parameters as δ = 0.3; 
I0 = 0.65; T (0) = 0.08; λ =1/250; λ and varying α, β, and E. The dynamic regimes 
are illustrated by the bifurcation diagrams for the output state with respect to the 
decreasing temperature. Figure 2 shows the time evolutions of the output of a 
transient state and the decreasing temperature when α = 0.98, β =500, E = 0 and α 
= 0.9998, β = 500, E = 0, respectively. Fixed points, periodic orbits and complex 
oscillation can be detected in Figure 2. The chaotic dynamics also disappear 
quickly due to the cooling temperature decreasing rapidly with a small value of α 
that is shown as in Figure 2(a). On the other hand, in Figure 2(b), the chaotic 
dynamics last longer owing to a larger value of α. Therefore, the value of α can 
also govern the bifurcation speed of the chaotic interconnection strength in the 
proposed CMAC-ACL. 

4. EXPERIMENTAL RESULTS 

In this paper, the training phase and recognition process are simulated in a 
Pentium-IV personal computer with an interpreter language MATLAB. The total 
number of characters to be tested is 94. Some test patterns with a size of 8×8 pixels 
are shown in Figure 3. The recognition performance for the proposed CMAC-ACL 
was compared with the conventional CMAC. In the training phase, a test pattern is 
reorganized as a 64-bit vector and sent to the input of the proposed CMAC-ACL. 
Then every 4-bit data are encoded as an address to update the weights in the 
memory. Therefore, a character can be encoded into 16 locations in memory to 
store 16 weights.  

In the recognition process, the characters with/without error pixels are sent to 
the input of the proposed CMAC-ACL. The weights of every character are 
summarized and the maximum summation indicates which one is found. In Figure 
4(a), 8 error pixels are added into characters 0, 2, 5, 7, and 9. These characters are 
correctly identified by the conventional CMAC and the proposed CMAC-ACL with 
error rates 6.4 and 2.1% respectively, although they almost can not be recognized 
by human eyes. Thirteen error pixels are also generated in characters A, F, H, K, L 
shown in Figure 4(b). These characters can not be recognized by human eyes 
completely but they can be identified by the conventional CMAC and the proposed 
CMAC-ASL with error rates 25.6% and 17.0% respectively. The detail recognition 
performances are shown in Tables 1 and 2, in which the number of misidentified 
characters over the total number of characters are shown in row 2. For example, 

94
7  indicates 7 characters are misrecognized for all 94 characters. From the results 

shown in Tables 1 and 2, the proposed CMAC-ASL can obtain a lower error rate 
than the conventional CMAC. More timing consumption was needed for the 
proposed CMAC-ALC than the conventional CMAC in the training phase in an 
off-line state. But the processing timing is the same in the recognizing phase in an 
on-line state for these two strategies. The training phase can not have any influence 
on the real applications. 
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(a) (α = 0.98, β =500, and E = 0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) (α = 0.9998, β =500, and E = 0) 

Figure 2. Time evolutions of an interconnection strength with variant α in the proposed 
CMAC-ACL: (a) α = 0.98, β =500, and E=0; (b) α = 0.9998, β =500, and E=0. 

Table 1. Recognition performance of the conventional CMAC with an error rate for different 
number of noise pixels in a 64 (8×8)-pixel character (Total Characters = 94) 

noise pixels 0-4 5 6 7 8-9 10 11 12 13 
Misidentified characters 0 1 3 4 6 10 19 23 24 

Error rate (%) 0 1.0 3.2 4.3 6.4 10.7 20.3 24.5 25.6 
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Figure 3. Several 8×8 characters in test patterns. 

 

 

(a) 8 error pixels in chareaters ‘0’, ‘2’, ‘5’, ‘7’, and ‘9’ 

 

 

(b) 13 error pixels in chareaters ‘A’, ‘F’, ‘H’, ‘K’, and ‘L’ 

Figure 4. Some 8×8 characters with distinct error pixels in the test patterns. 

Table 2. Recognition performance of the proposed CMAC-ACL with error rate for different 
number of noise pixels in a 64(8×8)-pixel character 
noise pixels 0-4 5 6 7 8-9 10 11 12 13 

Misidentified characters 0 0 0 0 2 4 7 16 16 
Error rate (%) 0 0 0 0 2.1 4.3 7.5 17.0 17.0 
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Among those 94 characters, several confusing sets such as [0, o, O], [2, z, Z] 
and [1, l] are usually difficult to distinguish correctly without considering 
contextual information. The recognition performance for the sets [0, o, O], [2, z, Z] 
and [1, l] are shown in Tables 3, 4, and 5, respectively. From these Tables, we can 
find that the proposed CMAC-ACL can achieve better experimental results. Such 
as the set [2, z, Z] with 15 to 19 noise pixels, 1 misidentified character in these 3 
characters for the proposed CMAC-ACL as well as 2 misidentified characters for 
the conventional CMAC. Due to the noise pixels being randomly added, the 
misidentified characters can not usually be members of the same set. 

Table 3. Recognition performance of the proposed CMAC-ACL and CMAC for the set [0, o, 
O] with noise pixels in a 64(8×8)-pixel character 

noise pixels 0-9 10-14 15-16 17-22 23-25 Over 25 
CMAC-ACL 0/3 0/3 1/3 2/3 2/3 3/3 

TC
MC  

CMAC 0/3 1/3 1/3 2/3 3/3 3/3 

Note. MC: Misidentified characters, TC:Total characters. 

Table 4. Recognition performance of the proposed CMAC-ACL and CMAC for the set [2, z, 
Z] with noise pixels in a 64(8×8)-pixel character 

noise pixels 0-12 13-14 15-19 20-25 25-26 Over 27 
CMAC-ACL 0/3 1/3 1/3 2/3 2/3 3/3 

TC
MC  

CMAC 0/3 1/3 2/3 2/3 3/3 3/3 

Note. MC: Misidentified characters, TC:Total characters. 

Table 5. Recognition performance of the proposed CMAC-ACL and CMAC for the set [1, l] 
with noise pixels in a 64(8×8)-pixel character 

noise pixels 0-5 6-9 10-16 16-24 Over 24 
CMAC-ACL  0/2 0/2 1/2 1/2 2/2 

TC
MC  

CMAC 0/2 1/2 1/2 2/2 2/2 

Note. MC: Misidentified characters, TC:Total characters. 

5. CONCLUSIONS 

In this paper, a CMAC network embedded an annealed chaotic learning, 
named CMAC-ACL, was proposed and applied to the application of character 
recognition. Due to the nonlinear mapping function of the chaotic dynamics, the 
proposed CMAC-ACL can correctly recognize characters with a lower error rate 
than conventional CMAC, even though several error pixels were added to the test 
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characters. In addition, the CMAC can realize the nonlinear mapping with a 
look-up table memory in hardware implementation to perform fast processing in 
any application. 
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