
N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 29

A Virtual Channel Technique for Supporting
Live/On-demand Streaming

NIEN-CHEN LIN1,*, CHEN-LUNG CHAN2, AND JIA-SHUNG WANG2
1Chunghwa Telecom Laboratories, Taiwan

2Department of Computer Science, National Tsing Hua University, Taiwan

ABSTRACT
Nowadays, some powerful client devices, e.g., set-top boxes and digital video recorders, are

commonly used to enhance digital TV broadcasting services. This paper proposes a virtual channel
platform by organizing these client devices to establish a peer-to-peer overlay to virtually support each
user with a dedicated channel according to their demands. In the proposed platform, each video
program is partitioned into many small segments before it is shared. A virtual channel is constructed by
composing the necessary video segments, which are possibly from different videos, into a long video
playout sequence for the user. However, retrieving these small segments from a large scale peer-to-peer
network could cause a relatively large query overhead. To reduce the number of queries, we propose a
virtual stream mechanism by aggregating popular adjacent video segments to logically form a long
video object. The simulation results demonstrate that the proposed virtual channel platform can
improve the service performance.

Key words: DTV, streaming video, peer-to-peer network.

1. INTRODUCTION

Digital TV (DTV) (Digital Video Broadcasting Project [DVB], 2007), which
is a new type of TV broadcasting technology, has become the most promising
means of home entertainment nowadays. In a traditional TV service, when users
want to watch their favorite programs, they will have to switch between multiple
channels.This viewing behavior has become a habit nowadays, however, it is not
good enough because the channel switching is complex and will probably cause
missed scenes. In addition, such channel switching could be time consuming in a
DTV service because the number of available channels could become extensive.

Since the viewing habits of different users might be significantly different, a
tradition channel-based browsing model is no longer flexible enough for modern
users. Virtual channel (Chorianopoulos, Lekakos & Spinellis, 2003;
Chorianopoulos & Spinellis, 2003, 2004) is a new service model that integrates live
broadcasting and stored video content to support flexible organization and dynamic
presentation of TV programs. In such a cross channel platform, a user can have
their own video playout sequence which is composed of their favorite programs.
Furthermore, the platform enables users to issue some VCR-like commands such as
play, pause, next, and previous. The most attractive thing is that users can now not
only be end viewers but also be video suppliers because they can publish their

* Corresponding author. E-mail: nclin@cht.com.tw

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 30

personal videos on the Internet. With these advanced applications, a virtual channel
is considered as the next generation multimedia service model.

Nowadays, some powerful client devices, e.g., set-top boxes (STB) and
digital video recorders (DVR), are widely integrated to enhance the TV
broadcasting service. These client devices usually have some computational powers,
some storage space, and a network interface for Internet access. In this paper, we
propose a virtual channel platform by organizing these client devices to form a
distributed video delivery platform to improve the availability of each video
program. That is, the video source of a client now could be from a TV channel, the
local disk, or other clients in the network. A virtual channel is established by
applying streaming video techniques to ensure the user can smoothly switch among
the video programs, i.e., they will not suffer from the drawbacks caused by channel
switching. To do so, the platform should provide a video discovery service so that
each user can efficiently find their favorite programs from all possible video
sources. From this point of view, the proposed virtual channel platform looks
similar to a general peer-to-peer (P2P) video delivery platform.

P2P overlay networks have been widely studied and implemented. Based on
their overlay structures, the P2P overlay networks can be roughly divided into two
categories: structured P2P (e.g. Pastry (Rowstron & Druschel, 2001), Chord (Stoica,
Morris, Kaashoek & Balakrishnan, 2001), CAN (Ratnasamy et al., 2001), and
CoopNet (Padmanabhan, Wang, Chou & Sripanidkulchai, 2002)) and unstructured
P2P (e.g., BitTorrent (2003), LimeWire (2001), and KaZaA (2003)). Some of these
techniques are further enhanced to support streaming video, e.g., CoolStreaming
(CoolStreaming, 2005; Zhang, Liu, Li & Yum, 2005)/ PeerCast (2001)/ PPLive
(PPlive, 2006; Hei, Liang, Liang, Liu & Ross, 2006) for live streaming and Bitos
(Vlavianos, Iliofotou & Faloutsos, 2006)/ BASS (Dana, Li, Harrison & Chuah,
2005)/ LiveBT (Lv et al., 2007) for video-on-demand. In these previous works, a
client caches the video clips it received and shares these clips with others, thus
reducing the server load and network traffic. Such a P2P sharing model is efficient
for file sharing and video streaming and, in fact, our virtual channel platform is also
developed based on a P2P model. However, there is still a critical difference
between the proposed virtual channel platform and these P2P video streaming
platforms, i.e., the different request behaviors.

In the virtual channel platform, the dedicated channel of a user is entirely
composed of their demanded video scenes. That is, the actual playout sequence of a
user is determined by their viewing behavior. The general viewing behaviors of a
user can be summarized as four modes: live mode, review mode, serial-play mode,
and interest-based mode. (1) In the live mode, a user synchronously plays out the
video frame which is being transmitted by the video source. Figure 1 shows an
example in which four users are concurrently watching a live video program, A. In
this case, all the users are playing the latest frame of the live program (e.g., playing
the frame A3 at the time slot 3), implying a sequential access pattern on the video A.
(2) The review mode is an extension of the live mode. When a user is watching a
live TV program, they may want to review some previous scenes, e.g., noteworthy
scenes or the scenes they just missed. Consider the example in Figure 2. Let the

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 31

live program A have a noteworthy scene at the time slot 3. Therefore, some users,
such as user 1 and user 2 in this example, may watch the scene A3 again at the time
slot 4. The request patterns in this case are still primarily composed of sequential
access. (3) In the serial-play mode, a user always watches an entire TV program
from the start to finish sequentially, as Figure 3 illustrates. This is the primary
access pattern of video-on-demand applications. (4) Unlike the previous three
viewing behaviors, the interest-based mode implies a random access pattern.
Consider the example in Figure 4, which supports four videos A, B, C, and D. In
this mode, a user can randomly access all the TV programs according to their
current interest, e.g., user 1 could play the frame A1 at the time slot 1 but play B2 at
the time slot 2. The resultant request sequences become irregular because they
might be composed of random scenes from distinct video programs.

User 1 A1 A2 A3 A4 A5 A6 A7 ……. An

A2 A3 A4 A5 A6 A7 ……. An

A3 A4 A5 A6 A7 ……. An

A4 A5 A6 A7 ……. An

User 2

User 3

User 4

Time 1 2 3 4 5 6 7 ……. n

Figure 1. Live viewing behavior.

User 1 A1 A2 A3 A3 A5 A6 A7 ……. An

A2 A3 A3 A5 A6 A7 ……. An

A3 A4 A5 A6 A7 ……. An

A4 A5 A6 A7 ……. An

User 2

User 3

User 4

Time 1 2 3 4 5 6 7 ……. n

Figure 2. Review viewing behavior.

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 32

User 1 A1 A2 A3 A4 A5 A6 A7 ……. An

A1 A2 A3 A4 A5 A6 ……. An

A1 A2 A3 A4 A5 ……. An

A1 A2 A3 A4 ……. An

User 2

User 3

User 4

Time 1 2 3 4 5 6 7 ……. n

A7

A7

A7

A6

A6A5

Figure 3. Serial-play viewing behavior.

User 1 A1 B2 A3 A4 D3 A5 C6 ……. Dn

C1 A1 B1 A5 A6 A4 ……. Bn-5

B2 A3 B2 A6 B3 ……. Cn-2

D2 B1 A1 A3 ……. An-1

User 2

User 3

User 4

Time 1 2 3 4 5 6 7 ……. n

Figure 4. Interest-based viewing behavior.

To provide each user with a dedicated channel, all the above request modes
should be efficiently supported by the virtual channel platform. Undoubtedly, the
first three modes can be represented by the interest-based mode, because a
sequential access pattern can be viewed as a special case of a random access pattern.
This implies that the platform must provide a random access request interface to
users.

Due to such random access issues, each video program should be divided into
many small segments in advance, so that each virtual channel can be represented by
the combination of these video segments. Once a user requests a virtual channel,
the demanded video segments will be assembled into a long playout sequence, and
the resultant video stream will be delivered. This procedure looks similar to P2P
swarming, which also divides a video stream into many pieces and resembles the
pieces on the client side. Thus, treating each video segment as a video program and
sharing them via P2P swarming could be a straightforward solution for a virtual
channel. However, the size of a video segment could be extremely small since it
could only be a short video scene, implying that the number of available segments
in the network could be extremely large. Also, these segments could have no

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 33

dependency and must be discovered individually. Distributing these extremely
small video segments over a large scale P2P overlay network could induce a
considerable query overhead, i.e., a user might send thousands of query messages
to discover a segment of only few mega bytes.

To share the video segments efficiently, the proposed virtual channel platform
is built atop a P2P video streaming architecture, so the extensive query overhead
also becomes the critical problem on our platform. However, considering that most
request modes are still based on sequential access, the requests should be served in
a sequential access manner as much as possible. The idea we propose in this paper
is a virtual stream mechanism that aggregates video segments which are frequently
being played together to logically form a long virtual video stream. With these long
virtual streams, a user can simultaneously discover multiple video segments via
only a query for a virtual stream, thus the number of query messages can be
significantly reduced.

The rest of this paper is organized as follows: Section 2 introduces the
concept of the proposed virtual channel platform and formulates its problem on
query overhead. Section 3 then presents a virtual stream mechanism for reducing
the query overhead. Section 4 presents some simulation results to evaluate the
performance of the platform. Finally, the conclusion and suggestions for future
work are given in Section 5.

2. THE FRAMEWORK OF VIRTUAL CHANNEL

As we mentioned above, the core architecture of the proposed virtual channel
platform is a P2P overlay network which has an extensive number of small video
segments sharing it. However, there are still some critical differences between our
platform and a general P2P swarming system. Here we introduce the essential
“logical” components used in our platform:

− The video source provider: The goal of a video source provider is to provide
original video programs. A video source provider could be a TV broadcasting
channel, a traditional video server, or a powerful client which can access the
Internet and has some videos to share.

− The client: A client device in our platform is not only the sink of a virtual
channel but also can be a video source provider. With the P2P overlay network
established by these powerful clients, the availability of each video program
can be further improved.

− The backup service: The storage and the reliability of a client would be limited.
To extend the life time of each video program, we suggest that a “backup
service”, that can stably store the videos from the video source providers, is
also essential. Such a backup service can be implemented on a centralized file
server, a proxy, a content distribution network (CDN), or even on peer-to-peer
storage. That is, the backup service can also be implemented by the P2P
overlay network itself if a reliable peer-to-peer storage management

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 34

mechanism is applied. The main functions of the backup service include: (1)
partitioning each video program into many small video segments; (2) storing
these video segments in the buffers; (3) sharing these video segments with the
clients. Once the storage of the backup service is exhausted, a LRU algorithm
is applied for cache replacement.

− The lookup service: The lookup service is used to keep the mapping of the
video segments and their hash keys. The same as the backup service, it can also
be implemented by a centralized directory server, a tracker, a distributed
database, or even by the P2P network itself.

The proposed virtual channel platform is constructed from four components,
as depicted in Figure 5. Next we describe in detail the three parts of the platform: (1)
publishing a video program; (2) locating the supplier peers; (3) retrieving the video
segments.

2.1 Publishing a Video Program

When a video source provider publishes a video program, the video stream
will be simultaneously forwarded to the backup service and the lookup service. The
backup service will partition the video into many small video segments and store
them in its local buffer. The lookup service will associate an unique hash key to
each generated video segment and maintain such mapping in a hash table.

2.2 Locating the Supplier Peers

Once a client requests a virtual channel, it invokes the lookup service to
translate the virtual channel to a list of hash keys of the essential video segments.
Then the client retrieves the video segment from one or more supplier peers. The
process to locate the candidate suppliers can be implemented in either a centralized
model or a peer-to-peer model. Since a centralized model could easily result in a
performance bottleneck, a peer-to-peer model is recommended. The peer-to-peer
models can be further classified into two categories: distributed hash table (DHT)
and flooding query model.

In a structure P2P system, a video source provider usually publishes the
essential information to specific peers where it can easily be discovered by
requesters by means of a DHT mechanism. However, any update of peer status and
system information will also cause an update of the content of the DHT. In the
virtual channel platform, a client can dynamically join or leave the system, and the
cached video segments in its buffer can also be updated much more frequently than
those in traditional P2P streaming platforms. Thus, the DHT model is not
appropriate for our platform. Based on the above, supplier discovery of the
proposed virtual channel platform is developed based on a flooding query model
similar as the Gnutella protocol (The Gnutella Protocol Specification, 2001). The
query process becomes: First, the client checks if the required video segments are
already cached in its local buffer. If the segments are not cached in the local buffer,
the client floods a query message to a number of its neighboring peers to find the

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 35

candidate suppliers and wait for responses. The neighbors will also forward the
query messages to their neighbors unless the predefined query range is exceeded.
After gathering the response messages, the client can choose a number of nodes as
its suppliers from the candidate list.

Let the maximum number of suppliers that a client can have be w, and let the
number of candidate suppliers returned by the query process be x. Then we have
the following three cases:

Case I. x ≥ w:
The available number of candidate suppliers is larger than the requirement.
In this case, this client will choose w peers as the video sources.

Case II. x < w and x > 0:
The number of candidate suppliers is smaller than the requirement, so the
client will simultaneously get the video segment from all of these x peers.

Case III. x = 0:
The video segment is not be cached in any peer in the P2P network.
Therefore, the client must get the video segment from the backup service.

2.3 Retrieving the Video Segments

After locating the supplier peers, the client then has to retrieve the desired
video segments from these supplier peers. If the buffer space of the client is
exhausted, a LRU algorithm is applied for cache replacement. Figure 6 shows an
illustrative example where the client c1 has to download the segments {A, B, C, D}.
Based on the query result, it will get {A, C, D} from S1 and {B, D} from S2. If it
has no buffer space to cache {A, B, C, D}, it will remove the segment whose access
time is the earliest from its buffer.

Lookup Service

Backup Service

Lookup Service

Backup Service

Figure 5. An illustrative example of the proposed virtual channel platform.

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 36

Supplier peers

Client peers

A
B
C
D

A
D
E

B
F

E
H

B

E
D

L
D

C
A

G
F

H

D
C
A

A

B

E
D

B H
E

F

…

…

…
……

……

S1 S2 S3

c1 c2 c3

D

D

Figure 6. An illustrative example of the P2P delivery architecture.

Now we derive the theoretic performance of the proposed virtual channel
platform, which is represented by the term “system cost.” Let c be the total system
cost, let cB be the total cost of the backup service, let cQ be the total cost of the
query messages, and let cD be the total cost for delivering the data over the P2P
overlay network. Therefore, the system cost will be

c = cB + cQ + cD. (1)

Let r be the total number of requests, let rL be the number of requests served
by the local buffers, let rP be the number of requests served by other peers, and let
rB be the number of requests served by the backup service. Obviously, the total
number of requests will be

r = rL + rP + rB. (2)

Let the cost of downloading a video segment from the backup service be oS. Then,
the total cost of the backup service cB will be

cB = rB ⋅ oS. (3)

Let the total number of peers that a query process involves be nP. Then, the total
number of query messages nQ will be

nQ = ((r – rL) ⋅ nP). (4)

Let the cost of delivering a query message be oQ. Therefore, the total cost of query
messages cQ will be as below:

()() QPL

QQQ
onrr

o n c
⋅⋅−=

⋅=

.
 (5)

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 37

Let the cost of delivering a segment over the p2p network be oB. Then, the total
cost of P2P delivery cD will be

cD = rP ⋅ oB. (6)

From (1), (3), (5), and (6), the theoretical system performance can be derived.
Note that minimizing cB and cD are usually the optimization goals of a

streaming video system, because the cost of delivering a video stream is generally
considered to dominate the system performance. However, the query overhead, i.e.,
cQ, could also be quite considerable in the virtual channel platform. To show the
impact of query overhead, let us consider the following example:

Let the length of each video segment be 5 minutes and let its coding bit rate
be 1 Mbps. Thus, the size of each video segment is 5*60/8 = 37.5MB. Let a
flooding query method similar to Gnutella with query TTL=7 be applied for
locating the suppliers, and let a client averagely have 10 neighbors. Let the size of
each query message be 1KB. When a client requests a video segment, the total
bandwidth used to discover the video segment will be (101 + 102 + 103 + 104 + 105
+ 106 + 107) * 0.001 (MB) = 11111.11 (MB). In this case, we must spend
11111.11MB of bandwidth to obtain only 37.5MB of video data, which is
undoubtedly an inefficient service strategy. Therefore, in the following section, we
propose a virtual stream mechanism to reduce the query message overhead.

Table 1. Symbols
c the total system cost
cB the total cost of the backup service
cQ the total cost of the query messages
cD the total cost of the data delivered over the P2P overlay network
r the total number of requests
rL the number of requests served by the local buffers
rP the number of requests served by other peers
rB the number of requests served by the backup service
nP the total number of peers that a query process involves
nQ the total number of query messages
oS the cost of delivering a video segment from the backup service
oQ the cost of delivering a query message
oB the cost of delivering a segment over the p2p network

3. OVERVIEW OF THE VIRTUAL STREAM MECHANISM

To reduce the query overhead caused by the extremely small segment size, we
introduce a new concept called “virtual stream” on the lookup service. A virtual
stream is a symbol of a set of video segments, and it is shared as a unit over the
virtual channel platform. The virtual streams can be further divided into two types:
(1) elemental virtual stream, and (2) beneficial virtual stream. Each video segment

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 38

is referred to as an elemental virtual stream, i.e., an elemental virtual stream
contains only one video segment. A beneficial virtual stream is a series of video
segments which are frequently accessed by user requests. The lookup service will
associate an unique hash key with each virtual stream and record these hash keys
into a hash table.

Once a client requests a virtual channel, the lookup service will (1) check all
useable beneficial virtual streams and try to use them to replace the matched
request sub-sequence of each user; (2) use the elemental virtual streams to replace
the user request segments which were not matched by the beneficial virtual streams;
(3) convert the request sequence to a series of hash keys associated with the virtual
streams. By means of the transformation from individual video segments to
beneficial virtual streams, the number of objects to be discovered in the P2P
overlay can be significantly reduced. In the real implementation we assume that the
lookup service will periodically determine the set of beneficial virtual streams
because the available video segments will be updated with time. Furthermore, the
number of beneficial virtual streams should also be limited to control the
computation complexity of virtual stream replacement. Therefore, we let the lookup
service periodically invoke virtual stream generation to select the most F popular
request sub-sequences as beneficial virtual streams at the beginning of every
“scheduling interval.”

As a beneficial virtual stream should represent a popular request
sub-sequence, determining the most popular request sub-sequences is critical for a
lookup service. Let the virtual channel platform have n clients, and let each client
Ci (1 ≤ i ≤ n) send out a request sequence qi (1 ≤ i ≤ n), which is composed of di (1
≤ di ≤ y) video segments, to the lookup service. (Note that y is the maximum
number of video segments that a request sequence can contain.) Then, we have qi =
{R1, R2, …, Rdi}. Consider a request sub-sequence v’ with y’ video segments (2 ≤ y’
≤ L), i.e., v’ = {U1’, U2’, …Uy’’}. (Note that L is the maximum length of a virtual
stream.) Then we define a term “match measure” MM as

⎩
⎨
⎧

=
.in occurrednot is ' if ,0
;in occurred is ' if ,1

)',(

i

i
i qv

qv
vqMM (5)

We use this match measure MM to check if the request sub-sequence v’ is matched
in the request sequence qi. If v’ is found in qi, we have MM(qi, v’) = 1. Otherwise,
we have MM(qi, v’) = 0. The match ratio of the request sub-sequence v’ is then
defined as follows:

n

vqMM
vMR

n

i
i∑

= =1
)',(

)'(. (6)

The above match ratio MR function for v’ is equivalent to the probability that a
request sequence contains v’. Then, if the match ratio of v’ is larger than or equal to

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 39

a threshold δ, i.e., MR(v’) ≥ δ, the request sub-sequence v’ is referred to as a
popular sub-sequence and is treated as a beneficial virtual stream.

Based on the above concept, we can determine which request sub-sequences
should be considered as beneficial virtual streams. However, the number of
beneficial virtual streams should be tightly limited because the generation,
matching, and replacement of virtual streams all could lead to considerable
computation complexity and memory consumption. Here we introduce two
approaches:

3.1 A Naïve Approach

A naïve approach is to list all possible sub-sequences, check their match ratio
MR, and select the highest ones as the beneficial virtual streams. However, this
naïve approach requires too large a memory space and computation overhead. For
example, let a virtual channel system have 10,000 video segments, whose lengths
are all five minutes long. Let the system have 10,000 clients, and let each client
request a total of 60 video segments (i.e., 5 hours). Therefore, the number of
possible request sub-sequences in the worst case will be 10,00060 = 10240, because a
video segment could be requested again and again by a client. To find the most
popular sub-sequences, we must derive all the possible sub-sequences in advance,
and then check the match ratio MR of each one. Since a beneficial virtual stream
will be at least two segments long, the number of possible sub-sequences will be:

,10000
60

2
∑
=i

i

which is an incredibly large number. Based on the above, we make two essential
reductions for virtual stream generation: (1) the number of sub-sequences to be
checked must be restricted, and (2) the length of each sub-sequence must also be
restricted.

To reduce the query overhead, the lookup service should reschedule the
request sequences and try to replace them with the beneficial virtual streams. The
scheduling approach can be further divided into two steps: (1) sequentially scan all
request sequences to check if any beneficial virtual stream is matched; (2) replace
the matched sub-sequences with the corresponding beneficial virtual streams.
Undoubtedly, such a naïve scheduling approach has some problems: (1) large
memory space and computation overhead, and (2) low match probability due to the
irregularity of request sequences. By taking all these problems into account, we
propose a new approach to speed up these processes.

3.2 The Proposed Approach

The proposed approach aims to reduce the computation overhead of both
generation and scheduling of virtual streams in the naïve approach and improve the
match probability of beneficial virtual streams. Although the interest-based mode

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 40

would lead to irregular request sequences and decrease the match probability, this
problem might not be so serious in the real world because a user in the
interest-based mode might not really care about the playout order of their
demanded segments, i.e., rescheduling the playback order of these video segment
could be acceptable. Therefore, we can let the lookup service rearrange the
interest-based user request sequences to increase the total match probability of the
beneficial virtual streams, thus the utilization of beneficial virtual streams can be
improved.

On the other hand, to restrict the number of sub-sequences to be checked, we
apply an interval batching mechanism on the lookup service to periodically
regenerate the most valuable virtual streams. Consider the example we mentioned
in the naïve approach again. Now we let the lookup service only deal with the
request sequences which contain at most 12 segments. Therefore, the number of
possible sub-sequences will be:

,10000
12

2
∑
=i

i

which is much smaller than the original number. However, the result is still too
large to be stored in memory. So to reduce the number of possible sub-sequences to
check, we further define a cost function called “estimated performance gain” to
represent the performance gain of each sub-sequence. The sub-sequences with the
largest performance gains will be selected as beneficial virtual streams. The
estimated performance gain (E(G)) of a virtual stream is defined as below.

After the virtual stream is applied, we assume that the number of query
messages becomes nQ’, the total number of requests becomes r’, and the number of
requests served by the local buffers becomes rL’. Then the number of query
messages nQ’ can be represented as:

nQ’ = ((r’ – rL’) ⋅ nP).

Let rB’ be the number of segments delivered by the backup service after the virtual
stream is applied. Therefore, the estimated performance gain (E(G)) will be

E(G) = (nQ – nQ’) ⋅ oQ – (rB’ – rB) ⋅ oS. (7)

Based on the equation (7), we propose a new algorithm for virtual stream
generation as follows:

First, the lookup service finds the most M frequently accessed video segments
in this scheduling interval. Then, it generates all possible sub-sequences by
spanning the frequently accessed video segments. Since a request sequence can be
rearranged, we only generate the sub-sequences by composing the segments as a
nondecreasing order according to their publishing times. For example, let the
popular segments in the current scheduling interval be A, B, and C, where A is
published to the network before B and C. So the possible sub-sequences will be {A,
B}, {A, B, C}, {B, C}, and {A, C}. Finally, the lookup service evaluates the

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 41

estimated performance gains E(G) based on the equation (7) and selects the
sub-sequences with the largest F gains as the beneficial virtual streams.

After the beneficial virtual streams are determined, the request sequences can
be rescheduled with a rearranging strategy. Note that while rearranging a request
sequence, each demanded video segment Ri cannot be scheduled to a time slot
before its publishing time t(Ri), i.e., cannot cause a “time violation.” However, this
procedure could also take a lot of computation overhead if the request sequence is
irregular. To reduce the computation complexity, we let the lookup service sort the
interest-based request sequences to a nondecreasing order on the segment
publishing time t(Ri). Here we prove that sorting the request sequences in advance
can decrease the probability of causing a time violation, as below:

Consider a simple system that always supports only one video program at a
time. Let Ri be the video segment requested at the ith time slot. Let t(Ri) be the
publishing time of the segment Ri. (Note that if t(Ri) > i, a time violation will occur.)
Let q’ be a sorted request sequence which contains d segments, i.e.,

q’ = {R1, R2, …, Rd}, t(R1) ≤ t(R2) ≤ ... ≤ t(Rd).

Let a segment Rk cause a time violation at time k. Assume that Rk can be
interchanged with another segment Rp so that both Rk and Rp will not cause a time
violation. Thus, the possible results can be derived as the following two cases:

Case 1: p < k
Because k > p and t(Rk) > k, we have t(Rk) > k > p. In this case, moving Rk to a

previous slot, e.g., the pth slot, will still cause a time violation.

Case 2: p > k
In this case, Rk will not cause a time violation, but Rp will. Since t(Rp) ≥ t(Rk)

and t(Rk) > k. According to these, we now have t(Rp) > k. This implies that moving
Rk to a subsequent slot, e.g., the pth slot, will let the interchanged request Rp cause a
new time violation at the kth time slot.

Based on the above, we conclude that if a time violation occurrs in a sorted
sequence, any interchanging will still cause a time violation. So to reduce
computation overhead, we let the lookup service sort the interest-based request
sequences in advance for virtual stream generation.

4. SIMULATION RESULTS

In this section, we evaluate the performance gain of the proposed virtual
stream mechanism. As 0 illustrates, two platforms, in which one is a baseline
platform and the other is an enhanced platform with beneficial virtual streams, are
simulated to compare their system loads. Note that the baseline platform behaves
just the same as a traditional P2P swarming system with an extensive number of
small video programs.

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 42

Table 2. Additional symbols
E(G) the estimated performance gain
nQ’ the number of query messages after the virtual stream is applied
rB

’ the number of segments delivered by the backup service after the virtual stream is applied
r’ the total number of requests after the virtual stream is applied
rL

’ the number of requests served by the local buffers after the virtual stream is applied
F the maximum number of beneficial virtual streams to be generated in each interval
vi the ith beneficial virtual stream, where 1 ≤ i ≤ F
qi the request sequence of the ith client
di the number of segments in the request sequence qi
Ri the ith demanded segments in the request sequence qi, i.e, qi = {R1, R2, …, Rdi}
t(Ri) the publishing time of the segment Ri

Table 3. The two platforms for comparison
Baseline platform Without beneficial virtual streams
Enhanced platform (our scheme) With beneficial virtual streams

In the core P2P overlays of both platforms, we let each client have 10
neighbors, and, to limit the query range of a request, let the TTL of each query
message be 5 hops. Let the length of each video be one hour long, and let each
video be divided into 12 five-minute video segments. The execution time of each
simulation is 24 hours. Let the scheduling interval for virtual stream generation be
one hour long. In each scheduling interval, the lookup service will determine at
most 10 beneficial virtual streams according to the proposed approach. In addition,
the maximum length of a beneficial virtual stream is five segments long. We use
the term “normalized load” to compare the system performances of both platforms:

platform baseline in thecost system
platform enhanced in thecost systemload normalized =

Since a user could change their viewing behavior at any time, we use a finite
state machine to model the viewing behavior of each user, as illustrated in Figure 7.
Under this finite state machine, a user can start from one of these five states (i.e.,
idle, live, review, serial-play, and interest-based), and then they can select to stay at
the same state or go to another state in the next time slot.

Also, we assume that the original video programs of both platforms are from
three TV channels, and the target audiences of these TV channels are different.
That is, users in different viewing states have the different probabilities on
accessing these three channels. Here we let the channel access pattern be the same
as the example illustrated in 0. In this example, if a user is in the Live state, the
probabilities that they will request video programs from the three channels are 50%,
30%, and 20% respectively. With the above viewing finite state machine and
channel access pattern, the user viewing behavior can be modeled.

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 43

Now we evaluate the system performance of the baseline platform and the
enhanced platform under different request patterns: (1) “live-major”: with a high
ratio of live viewing; (2) “serial-major”: with a high ratio of serial-play viewing; (3)
“random-major”: with a high ratio of interest-based viewing. In this simulation,
each client averagely issues 0.97 requests every five minutes, and the request
distribution is determined by the viewing model mentioned above. We then vary
the number of clients from 10,000 to 100,000 to investigate the normalized load
under these settings.

The simulation results illustrated in Figure 8 show that the system load of the
serial-major can be improved the most, because the request sequences in serial-play
mode easily generate both long and frequently accessed beneficial virtual streams.
Besides, the system load of the interest-based mode still can be reduced by about
20%, although it is not as efficient as the serial-play mode. The live mode cannot
be benefited by the virtual stream mechanism because each client receives the latest
frame so that the virtual stream mechanism cannot be applied. Therefore, in the
following simulations, we only focus on the viewing behaviors based on
random-major and serial-major mode, and we modify two key parameters, i.e., the
number of the beneficial virtual streams in a scheduling interval and the maximum
length of a beneficial virtual stream, to investigate the corresponding service
performance.

Serial
-play

Live

Idle

Review Interest
-based

Figure 7. The finite state machine to model the user viewing behavior.

Table 4. An example of channel cccess pattern
 Channel 1 Channel 2 Channel 3
Live state 50% 30% 20%
Serial-play state 20% 70% 10%
Interest-based state 10% 30% 60%

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 44

0

0.2

0.4

0.6

0.8

1

1.2

0 20000 40000 60000 80000 100000

num of user

no
rm

al
iz

ed
 lo

ad

live-major
serial-major
random-major

Figure 8. The impacts of request patterns.

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000
num of user

no
rm

al
iz

ed
 lo

ad

num = 5
num = 10
num = 15
num = 20
num = 25

(a)

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000
num of user

no
rm

al
iz

ed
 lo

ad

num = 5
num = 10
num = 15
num = 20
num = 25

(b)

Figure 9. The impact of the number of generated beneficial virtual streams. (a) For
random-major. (b) For serial-major.

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 45

Figure 9 depicts the simulation results by adjusting the maximum number of
beneficial virtual streams generated in each scheduling interval time, where Figure
9(a) and Figure 9(b) are simulated with a random-major and a serial-major request
pattern respectively. These figures demonstrate that the more beneficial virtual
streams imply a lower normalized system load, and the request pattern in a
serial-major mode has a larger improvement than that in a random-major mode.
However, once the number of beneficial virtual streams reaches a bound, e.g., 20
streams if the number of users is 30,000, the improvement becomes insignificant.
To derive the relation between the number of beneficial virtual streams and the
performance gain will be one of our future works.

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6

length of virtual stream

no
rm

al
iz

ed
 lo

ad

random-major

serial-major

Figure 10. The impact of the maximum length of a virtual stream.

In the final simulation, we modify the maximum length of a beneficial virtual
stream from two segments to five segments. Figure 10 illustrates the simulation
results, demonstrating that a longer virtual stream implies a lower normalized
system load. This figure also illustrates that the normalized system load of a
serial-major request pattern has a greater improvement than that of random-major
request pattern, which still conforms to the above simulation results.

5. CONCLUSIONS

We have proposed a virtual channel platform, which organizes DTV client
devices to virtually support each user with a dedicated channel according to their
desires. We have introduced a peer-to-peer overlay network for sharing their
resources, such as their buffers and network bandwidth, thus improving overall
video availability. In addition, each video program is partitioned into many small
segments before it is shared in this peer-to-peer network. However, such a

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 46

peer-to-peer delivery architecture would cause considerable query overhead, so we
also have proposed a virtual stream mechanism which aggregates the popular
connected video segments into a long video stream to reduce the number of query
messages. The simulation results demonstrate that our virtual stream mechanism
can significantly reduce the query overhead, thus system performance can be
improved. Our future work is to develop a more efficient algorithm for generating
beneficial virtual streams to further improve service performance.

REFERENCES

BitTorrent (2003). Retrieved from http://www.bittorrent.com.
Chorianopoulos, K., Lekakos, G., & Spinellis, D. (2003). The virtual channel

model for personalized television. Proc. EuroiTV2003, 59-67.
Chorianopoulos, K., & Spinellis, D. (2004). Affective usability evaluation for an

interactive music television channel. Computers in Entertainment, 2(3), 14-18.
Chorianopoulos, K., & Spinellis, D. (2003). A metaphor for personalized television

programming. Proc. ERCIM Wor.: User Interfaces for All, 187-194.
CoolStreaming (2005). Retrieved from http://www.coolstreaming.us.
Dana, C., Li, D., Harrison, D., & Chuah, C. N. (2005). BASS: BitTorrent assisted

streaming system for video-on-demand. Proc. IEEE MMSP, 1-4.
Digital Video Broadcasting Project [DVB] (2007). Retrieved from http://www.

dvb.org.
Hei, X., Liang, C., Liang, J., Liu, Y., & Ross, K. W. (2006). Insights into PPLive:

A measurement study of a large-scale P2P IPTV system. Proc. IPTV.
KaZaA (2003). Retrieved from http://www.kazza.com.
LimeWire (2001). Retrieved from http://www.limewire.com.
Lv, J., Cheng, X., Jiang, Q., Ye, J., Zhang, T., Lin, I., & Wang, L. (2007). LiveBT:

Providing video-on-demand streaming service over BitTorrent systems. Proc.
PDCAT, 501-508.

Padmanabhan, V. N., Wang, H. J., Chou, P. A., & Sripanidkulchai, K. (2002).
Distributing streaming media content using cooperative networking. Proc. ACM
NOSSDAV, 177-186.

PeerCast (2001). Retrieved from http://www.peercast.org.
PPlive (2006). Retrieved from http://www.pplive.com.
Rowstron, A., & Druschel, P. (2001). Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems. Proc. IFIP/ACM Int. Conf.
Distributed Systems Platforms (Middleware 2001), 2218, 329-350.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001). A
scalable content-addressable network. Proc. ACM SIGCOMM, 161-172.

Stoica, I., Morris, R., Kaashoek, M., & Balakrishnan, H. (2001). Chord: A scalable
peer-to-peer lookup service for Internet applications. Proc. ACM SIGCOMM,
149-160.

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 47

The Gnutella Protocol Specification (2001). http://www9.limewire.com/developer/
gnutella_protocol_0.4.pdf.

Vlavianos, A., Iliofotou, M., & Faloutsos, M. (2006). BiToS: Enhancing BitTorrent
for supporting streaming applications. Proc. IEEE INFOCOM, 1-6.

Zhang, X., Liu, J. C., Li, B. & Yum, T.-S. P. (2005). CoolStreaming/DONet: A
data-driven overlay network for efficient live media streaming. Proc. IEEE
INFOCOM, 2102-2111.

Nien-Chen Lin received her B. S. degree in
computer and information science from Tunghai
University in 2004, and her M. S. degree in computer
science from National Tsing Hua University in 2006.

She joined the Internet and Multimedia Application
Technology Laboratory, Chunghwa Telecom Laboratories,
in 2007 as an Associate Researcher. Her research interests
involve multimedia delivery and peer-to-peer network
communications.

Chen-Lung Chan received his B. S., M. S., and Ph.
D. degrees in computer science from National Tsing Hua
University, Hsinchu, Taiwan, R.O.C., in 1999, 2001, and
2006 respectively.

He joined the Computer and Communication
Research Center, National Tsing Hua University, in 2006
as a Postdoc Researcher. His research interests include
multimedia delivery, peer-to-peer over network, and
wireless communications.

N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007

 48

Jia-Shung Wang received his B. S. degree in
mathematics from National Taiwan University in 1978,
and his M. S. and Ph. D. degrees in computer science from
National Tsing Hua University, in 1983 and 1986,
respectively.

He joined the Computer Science Department,
National Tsing Hua University, in 1986 as an Associate
Professor and became a Full Professor in 1995. His current
research interests cover several aspects of Multimedia
Networking, Video Coding, and VLSI Design.

