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ABSTRACT 
Nowadays, some powerful client devices, e.g., set-top boxes and digital video recorders, are 

commonly used to enhance digital TV broadcasting services. This paper proposes a virtual channel 
platform by organizing these client devices to establish a peer-to-peer overlay to virtually support each 
user with a dedicated channel according to their demands. In the proposed platform, each video 
program is partitioned into many small segments before it is shared. A virtual channel is constructed by 
composing the necessary video segments, which are possibly from different videos, into a long video 
playout sequence for the user. However, retrieving these small segments from a large scale peer-to-peer 
network could cause a relatively large query overhead. To reduce the number of queries, we propose a 
virtual stream mechanism by aggregating popular adjacent video segments to logically form a long 
video object. The simulation results demonstrate that the proposed virtual channel platform can 
improve the service performance. 

Key words: DTV, streaming video, peer-to-peer network. 

1. INTRODUCTION 

Digital TV (DTV) (Digital Video Broadcasting Project [DVB], 2007), which 
is a new type of TV broadcasting technology, has become the most promising 
means of home entertainment nowadays. In a traditional TV service, when users 
want to watch their favorite programs, they will have to switch between multiple 
channels.This viewing behavior has become a habit nowadays, however, it is not 
good enough because the channel switching is complex and will probably cause 
missed scenes. In addition, such channel switching could be time consuming in a 
DTV service because the number of available channels could become extensive. 

Since the viewing habits of different users might be significantly different, a 
tradition channel-based browsing model is no longer flexible enough for modern 
users. Virtual channel (Chorianopoulos, Lekakos & Spinellis, 2003; 
Chorianopoulos & Spinellis, 2003, 2004) is a new service model that integrates live 
broadcasting and stored video content to support flexible organization and dynamic 
presentation of TV programs. In such a cross channel platform, a user can have 
their own video playout sequence which is composed of their favorite programs. 
Furthermore, the platform enables users to issue some VCR-like commands such as 
play, pause, next, and previous. The most attractive thing is that users can now not 
only be end viewers but also be video suppliers because they can publish their 
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personal videos on the Internet. With these advanced applications, a virtual channel 
is considered as the next generation multimedia service model. 

Nowadays, some powerful client devices, e.g., set-top boxes (STB) and 
digital video recorders (DVR), are widely integrated to enhance the TV 
broadcasting service. These client devices usually have some computational powers, 
some storage space, and a network interface for Internet access. In this paper, we 
propose a virtual channel platform by organizing these client devices to form a 
distributed video delivery platform to improve the availability of each video 
program. That is, the video source of a client now could be from a TV channel, the 
local disk, or other clients in the network. A virtual channel is established by 
applying streaming video techniques to ensure the user can smoothly switch among 
the video programs, i.e., they will not suffer from the drawbacks caused by channel 
switching. To do so, the platform should provide a video discovery service so that 
each user can efficiently find their favorite programs from all possible video 
sources. From this point of view, the proposed virtual channel platform looks 
similar to a general peer-to-peer (P2P) video delivery platform. 

P2P overlay networks have been widely studied and implemented. Based on 
their overlay structures, the P2P overlay networks can be roughly divided into two 
categories: structured P2P (e.g. Pastry (Rowstron & Druschel, 2001), Chord (Stoica, 
Morris, Kaashoek & Balakrishnan, 2001), CAN (Ratnasamy et al., 2001), and 
CoopNet (Padmanabhan, Wang, Chou & Sripanidkulchai, 2002)) and unstructured 
P2P (e.g., BitTorrent (2003), LimeWire (2001), and KaZaA (2003)). Some of these 
techniques are further enhanced to support streaming video, e.g., CoolStreaming 
(CoolStreaming, 2005; Zhang, Liu, Li & Yum, 2005)/ PeerCast (2001)/ PPLive 
(PPlive, 2006; Hei, Liang, Liang, Liu & Ross, 2006) for live streaming and Bitos 
(Vlavianos, Iliofotou & Faloutsos, 2006)/ BASS (Dana, Li, Harrison & Chuah, 
2005)/ LiveBT (Lv et al., 2007) for video-on-demand. In these previous works, a 
client caches the video clips it received and shares these clips with others, thus 
reducing the server load and network traffic. Such a P2P sharing model is efficient 
for file sharing and video streaming and, in fact, our virtual channel platform is also 
developed based on a P2P model. However, there is still a critical difference 
between the proposed virtual channel platform and these P2P video streaming 
platforms, i.e., the different request behaviors. 

In the virtual channel platform, the dedicated channel of a user is entirely 
composed of their demanded video scenes. That is, the actual playout sequence of a 
user is determined by their viewing behavior. The general viewing behaviors of a 
user can be summarized as four modes: live mode, review mode, serial-play mode, 
and interest-based mode. (1) In the live mode, a user synchronously plays out the 
video frame which is being transmitted by the video source. Figure 1 shows an 
example in which four users are concurrently watching a live video program, A. In 
this case, all the users are playing the latest frame of the live program (e.g., playing 
the frame A3 at the time slot 3), implying a sequential access pattern on the video A. 
(2) The review mode is an extension of the live mode. When a user is watching a 
live TV program, they may want to review some previous scenes, e.g., noteworthy 
scenes or the scenes they just missed. Consider the example in Figure 2. Let the 
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live program A have a noteworthy scene at the time slot 3. Therefore, some users, 
such as user 1 and user 2 in this example, may watch the scene A3 again at the time 
slot 4. The request patterns in this case are still primarily composed of sequential 
access. (3) In the serial-play mode, a user always watches an entire TV program 
from the start to finish sequentially, as Figure 3 illustrates. This is the primary 
access pattern of video-on-demand applications. (4) Unlike the previous three 
viewing behaviors, the interest-based mode implies a random access pattern. 
Consider the example in Figure 4, which supports four videos A, B, C, and D. In 
this mode, a user can randomly access all the TV programs according to their 
current interest, e.g., user 1 could play the frame A1 at the time slot 1 but play B2 at 
the time slot 2. The resultant request sequences become irregular because they 
might be composed of random scenes from distinct video programs. 

User 1 A1 A2 A3 A4 A5 A6 A7 ……. An

A2 A3 A4 A5 A6 A7 ……. An

A3 A4 A5 A6 A7 ……. An

A4 A5 A6 A7 ……. An

User 2

User 3

User 4

Time          1      2      3      4      5      6      7       …….        n 

 

Figure 1. Live viewing behavior. 

User 1 A1 A2 A3 A3 A5 A6 A7 ……. An

A2 A3 A3 A5 A6 A7 ……. An

A3 A4 A5 A6 A7 ……. An

A4 A5 A6 A7 ……. An

User 2

User 3

User 4

Time          1      2      3      4      5      6      7       …….        n 

 
Figure 2. Review viewing behavior. 
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User 1 A1 A2 A3 A4 A5 A6 A7 ……. An

A1 A2 A3 A4 A5 A6 ……. An

A1 A2 A3 A4 A5 ……. An

A1 A2 A3 A4 ……. An

User 2

User 3

User 4

Time          1      2      3      4      5      6      7       …….       n 

A7

A7

A7

A6

A6A5

 

Figure 3. Serial-play viewing behavior. 

User 1 A1 B2 A3 A4 D3 A5 C6 ……. Dn

C1 A1 B1 A5 A6 A4 ……. Bn-5

B2 A3 B2 A6 B3 ……. Cn-2

D2 B1 A1 A3 ……. An-1

User 2

User 3

User 4

Time          1      2      3      4      5      6      7           …….        n 

 

Figure 4. Interest-based viewing behavior. 

To provide each user with a dedicated channel, all the above request modes 
should be efficiently supported by the virtual channel platform. Undoubtedly, the 
first three modes can be represented by the interest-based mode, because a 
sequential access pattern can be viewed as a special case of a random access pattern. 
This implies that the platform must provide a random access request interface to 
users. 

Due to such random access issues, each video program should be divided into 
many small segments in advance, so that each virtual channel can be represented by 
the combination of these video segments. Once a user requests a virtual channel, 
the demanded video segments will be assembled into a long playout sequence, and 
the resultant video stream will be delivered. This procedure looks similar to P2P 
swarming, which also divides a video stream into many pieces and resembles the 
pieces on the client side. Thus, treating each video segment as a video program and 
sharing them via P2P swarming could be a straightforward solution for a virtual 
channel. However, the size of a video segment could be extremely small since it 
could only be a short video scene, implying that the number of available segments 
in the network could be extremely large. Also, these segments could have no 
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dependency and must be discovered individually. Distributing these extremely 
small video segments over a large scale P2P overlay network could induce a 
considerable query overhead, i.e., a user might send thousands of query messages 
to discover a segment of only few mega bytes. 

To share the video segments efficiently, the proposed virtual channel platform 
is built atop a P2P video streaming architecture, so the extensive query overhead 
also becomes the critical problem on our platform. However, considering that most 
request modes are still based on sequential access, the requests should be served in 
a sequential access manner as much as possible. The idea we propose in this paper 
is a virtual stream mechanism that aggregates video segments which are frequently 
being played together to logically form a long virtual video stream. With these long 
virtual streams, a user can simultaneously discover multiple video segments via 
only a query for a virtual stream, thus the number of query messages can be 
significantly reduced. 

The rest of this paper is organized as follows: Section 2 introduces the 
concept of the proposed virtual channel platform and formulates its problem on 
query overhead. Section 3 then presents a virtual stream mechanism for reducing 
the query overhead. Section 4 presents some simulation results to evaluate the 
performance of the platform. Finally, the conclusion and suggestions for future 
work are given in Section 5. 

2. THE FRAMEWORK OF VIRTUAL CHANNEL 

As we mentioned above, the core architecture of the proposed virtual channel 
platform is a P2P overlay network which has an extensive number of small video 
segments sharing it. However, there are still some critical differences between our 
platform and a general P2P swarming system. Here we introduce the essential 
“logical” components used in our platform: 

− The video source provider: The goal of a video source provider is to provide 
original video programs. A video source provider could be a TV broadcasting 
channel, a traditional video server, or a powerful client which can access the 
Internet and has some videos to share. 

− The client: A client device in our platform is not only the sink of a virtual 
channel but also can be a video source provider. With the P2P overlay network 
established by these powerful clients, the availability of each video program 
can be further improved. 

− The backup service: The storage and the reliability of a client would be limited. 
To extend the life time of each video program, we suggest that a “backup 
service”, that can stably store the videos from the video source providers, is 
also essential. Such a backup service can be implemented on a centralized file 
server, a proxy, a content distribution network (CDN), or even on peer-to-peer 
storage. That is, the backup service can also be implemented by the P2P 
overlay network itself if a reliable peer-to-peer storage management 
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mechanism is applied. The main functions of the backup service include: (1) 
partitioning each video program into many small video segments; (2) storing 
these video segments in the buffers; (3) sharing these video segments with the 
clients. Once the storage of the backup service is exhausted, a LRU algorithm 
is applied for cache replacement. 

− The lookup service: The lookup service is used to keep the mapping of the 
video segments and their hash keys. The same as the backup service, it can also 
be implemented by a centralized directory server, a tracker, a distributed 
database, or even by the P2P network itself. 

The proposed virtual channel platform is constructed from four components, 
as depicted in Figure 5. Next we describe in detail the three parts of the platform: (1) 
publishing a video program; (2) locating the supplier peers; (3) retrieving the video 
segments. 

2.1 Publishing a Video Program 

When a video source provider publishes a video program, the video stream 
will be simultaneously forwarded to the backup service and the lookup service. The 
backup service will partition the video into many small video segments and store 
them in its local buffer. The lookup service will associate an unique hash key to 
each generated video segment and maintain such mapping in a hash table. 

2.2 Locating the Supplier Peers 

Once a client requests a virtual channel, it invokes the lookup service to 
translate the virtual channel to a list of hash keys of the essential video segments. 
Then the client retrieves the video segment from one or more supplier peers. The 
process to locate the candidate suppliers can be implemented in either a centralized 
model or a peer-to-peer model. Since a centralized model could easily result in a 
performance bottleneck, a peer-to-peer model is recommended. The peer-to-peer 
models can be further classified into two categories: distributed hash table (DHT) 
and flooding query model. 

In a structure P2P system, a video source provider usually publishes the 
essential information to specific peers where it can easily be discovered by 
requesters by means of a DHT mechanism. However, any update of peer status and 
system information will also cause an update of the content of the DHT. In the 
virtual channel platform, a client can dynamically join or leave the system, and the 
cached video segments in its buffer can also be updated much more frequently than 
those in traditional P2P streaming platforms. Thus, the DHT model is not 
appropriate for our platform. Based on the above, supplier discovery of the 
proposed virtual channel platform is developed based on a flooding query model 
similar as the Gnutella protocol (The Gnutella Protocol Specification, 2001). The 
query process becomes: First, the client checks if the required video segments are 
already cached in its local buffer. If the segments are not cached in the local buffer, 
the client floods a query message to a number of its neighboring peers to find the 



N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007 

 35

candidate suppliers and wait for responses. The neighbors will also forward the 
query messages to their neighbors unless the predefined query range is exceeded. 
After gathering the response messages, the client can choose a number of nodes as 
its suppliers from the candidate list. 

Let the maximum number of suppliers that a client can have be w, and let the 
number of candidate suppliers returned by the query process be x. Then we have 
the following three cases: 

Case I. x ≥ w: 
The available number of candidate suppliers is larger than the requirement. 
In this case, this client will choose w peers as the video sources. 

Case II. x < w and x > 0: 
The number of candidate suppliers is smaller than the requirement, so the 
client will simultaneously get the video segment from all of these x peers. 

Case III. x = 0: 
The video segment is not be cached in any peer in the P2P network. 
Therefore, the client must get the video segment from the backup service. 

2.3 Retrieving the Video Segments 

After locating the supplier peers, the client then has to retrieve the desired 
video segments from these supplier peers. If the buffer space of the client is 
exhausted, a LRU algorithm is applied for cache replacement. Figure 6 shows an 
illustrative example where the client c1 has to download the segments {A, B, C, D}. 
Based on the query result, it will get {A, C, D} from S1 and {B, D} from S2. If it 
has no buffer space to cache {A, B, C, D}, it will remove the segment whose access 
time is the earliest from its buffer. 

Lookup Service

Backup Service

Lookup Service

Backup Service

 
Figure 5. An illustrative example of the proposed virtual channel platform. 
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Figure 6. An illustrative example of the P2P delivery architecture. 

Now we derive the theoretic performance of the proposed virtual channel 
platform, which is represented by the term “system cost.” Let c be the total system 
cost, let cB be the total cost of the backup service, let cQ be the total cost of the 
query messages, and let cD be the total cost for delivering the data over the P2P 
overlay network. Therefore, the system cost will be 

c = cB + cQ + cD. (1) 

Let r be the total number of requests, let rL be the number of requests served 
by the local buffers, let rP be the number of requests served by other peers, and let 
rB be the number of requests served by the backup service. Obviously, the total 
number of requests will be 

r = rL + rP + rB. (2) 

Let the cost of downloading a video segment from the backup service be oS. Then, 
the total cost of the backup service cB will be 

cB = rB ⋅ oS. (3) 

Let the total number of peers that a query process involves be nP. Then, the total 
number of query messages nQ will be 

nQ = ((r – rL) ⋅ nP). (4) 

Let the cost of delivering a query message be oQ. Therefore, the total cost of query 
messages cQ will be as below: 

( )( ) QPL

QQQ 
onrr 

o n c
⋅⋅−=

⋅=

.
 (5) 
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Let the cost of delivering a segment over the p2p network be oB. Then, the total 
cost of P2P delivery cD will be 

cD = rP ⋅ oB. (6) 

From (1), (3), (5), and (6), the theoretical system performance can be derived. 
Note that minimizing cB and cD are usually the optimization goals of a 

streaming video system, because the cost of delivering a video stream is generally 
considered to dominate the system performance. However, the query overhead, i.e., 
cQ, could also be quite considerable in the virtual channel platform. To show the 
impact of query overhead, let us consider the following example: 

Let the length of each video segment be 5 minutes and let its coding bit rate 
be 1 Mbps. Thus, the size of each video segment is 5*60/8 = 37.5MB. Let a 
flooding query method similar to Gnutella with query TTL=7 be applied for 
locating the suppliers, and let a client averagely have 10 neighbors. Let the size of 
each query message be 1KB. When a client requests a video segment, the total 
bandwidth used to discover the video segment will be (101 + 102 + 103 + 104 + 105 
+ 106 + 107) * 0.001 (MB) = 11111.11 (MB). In this case, we must spend 
11111.11MB of bandwidth to obtain only 37.5MB of video data, which is 
undoubtedly an inefficient service strategy. Therefore, in the following section, we 
propose a virtual stream mechanism to reduce the query message overhead. 

Table 1. Symbols 
c the total system cost 
cB the total cost of the backup service 
cQ the total cost of the query messages 
cD the total cost of the data delivered over the P2P overlay network 
r the total number of requests 
rL the number of requests served by the local buffers 
rP the number of requests served by other peers 
rB the number of requests served by the backup service 
nP the total number of peers that a query process involves 
nQ the total number of query messages 
oS the cost of delivering a video segment from the backup service 
oQ the cost of delivering a query message 
oB the cost of delivering a segment over the p2p network 

3. OVERVIEW OF THE VIRTUAL STREAM MECHANISM 

To reduce the query overhead caused by the extremely small segment size, we 
introduce a new concept called “virtual stream” on the lookup service. A virtual 
stream is a symbol of a set of video segments, and it is shared as a unit over the 
virtual channel platform. The virtual streams can be further divided into two types: 
(1) elemental virtual stream, and (2) beneficial virtual stream. Each video segment 
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is referred to as an elemental virtual stream, i.e., an elemental virtual stream 
contains only one video segment. A beneficial virtual stream is a series of video 
segments which are frequently accessed by user requests. The lookup service will 
associate an unique hash key with each virtual stream and record these hash keys 
into a hash table. 

Once a client requests a virtual channel, the lookup service will (1) check all 
useable beneficial virtual streams and try to use them to replace the matched 
request sub-sequence of each user; (2) use the elemental virtual streams to replace 
the user request segments which were not matched by the beneficial virtual streams; 
(3) convert the request sequence to a series of hash keys associated with the virtual 
streams. By means of the transformation from individual video segments to 
beneficial virtual streams, the number of objects to be discovered in the P2P 
overlay can be significantly reduced. In the real implementation we assume that the 
lookup service will periodically determine the set of beneficial virtual streams 
because the available video segments will be updated with time. Furthermore, the 
number of beneficial virtual streams should also be limited to control the 
computation complexity of virtual stream replacement. Therefore, we let the lookup 
service periodically invoke virtual stream generation to select the most F popular 
request sub-sequences as beneficial virtual streams at the beginning of every 
“scheduling interval.” 

As a beneficial virtual stream should represent a popular request 
sub-sequence, determining the most popular request sub-sequences is critical for a 
lookup service. Let the virtual channel platform have n clients, and let each client 
Ci (1 ≤ i ≤ n) send out a request sequence qi (1 ≤ i ≤ n), which is composed of di (1 
≤ di ≤ y) video segments, to the lookup service. (Note that y is the maximum 
number of video segments that a request sequence can contain.) Then, we have qi = 
{R1, R2, …, Rdi}. Consider a request sub-sequence v’ with y’ video segments (2 ≤ y’ 
≤ L), i.e., v’ = {U1’, U2’, …Uy’’}. (Note that L is the maximum length of a virtual 
stream.) Then we define a term “match measure” MM as 

⎩
⎨
⎧

=
.in  occurrednot  is ' if        ,0
;in  occurred is ' if              ,1

)',(
 

i

i
i qv

qv
vqMM  (5) 

We use this match measure MM to check if the request sub-sequence v’ is matched 
in the request sequence qi. If v’ is found in qi, we have MM(qi, v’) = 1. Otherwise, 
we have MM(qi, v’) = 0. The match ratio of the request sub-sequence v’ is then 
defined as follows: 

n

vqMM
vMR

n

i
i∑

= =1
)',(

)'( . (6) 

The above match ratio MR function for v’ is equivalent to the probability that a 
request sequence contains v’. Then, if the match ratio of v’ is larger than or equal to 
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a threshold δ, i.e., MR(v’) ≥ δ, the request sub-sequence v’ is referred to as a 
popular sub-sequence and is treated as a beneficial virtual stream. 

Based on the above concept, we can determine which request sub-sequences 
should be considered as beneficial virtual streams. However, the number of 
beneficial virtual streams should be tightly limited because the generation, 
matching, and replacement of virtual streams all could lead to considerable 
computation complexity and memory consumption. Here we introduce two 
approaches: 

3.1 A Naïve Approach 

A naïve approach is to list all possible sub-sequences, check their match ratio 
MR, and select the highest ones as the beneficial virtual streams. However, this 
naïve approach requires too large a memory space and computation overhead. For 
example, let a virtual channel system have 10,000 video segments, whose lengths 
are all five minutes long. Let the system have 10,000 clients, and let each client 
request a total of 60 video segments (i.e., 5 hours). Therefore, the number of 
possible request sub-sequences in the worst case will be 10,00060 = 10240, because a 
video segment could be requested again and again by a client. To find the most 
popular sub-sequences, we must derive all the possible sub-sequences in advance, 
and then check the match ratio MR of each one. Since a beneficial virtual stream 
will be at least two segments long, the number of possible sub-sequences will be: 

,10000
60

2
∑
=i

i  

which is an incredibly large number. Based on the above, we make two essential 
reductions for virtual stream generation: (1) the number of sub-sequences to be 
checked must be restricted, and (2) the length of each sub-sequence must also be 
restricted. 

To reduce the query overhead, the lookup service should reschedule the 
request sequences and try to replace them with the beneficial virtual streams. The 
scheduling approach can be further divided into two steps: (1) sequentially scan all 
request sequences to check if any beneficial virtual stream is matched; (2) replace 
the matched sub-sequences with the corresponding beneficial virtual streams. 
Undoubtedly, such a naïve scheduling approach has some problems: (1) large 
memory space and computation overhead, and (2) low match probability due to the 
irregularity of request sequences. By taking all these problems into account, we 
propose a new approach to speed up these processes. 

3.2 The Proposed Approach 

The proposed approach aims to reduce the computation overhead of both 
generation and scheduling of virtual streams in the naïve approach and improve the 
match probability of beneficial virtual streams. Although the interest-based mode 
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would lead to irregular request sequences and decrease the match probability, this 
problem might not be so serious in the real world because a user in the 
interest-based mode might not really care about the playout order of their 
demanded segments, i.e., rescheduling the playback order of these video segment 
could be acceptable. Therefore, we can let the lookup service rearrange the 
interest-based user request sequences to increase the total match probability of the 
beneficial virtual streams, thus the utilization of beneficial virtual streams can be 
improved. 

On the other hand, to restrict the number of sub-sequences to be checked, we 
apply an interval batching mechanism on the lookup service to periodically 
regenerate the most valuable virtual streams. Consider the example we mentioned 
in the naïve approach again. Now we let the lookup service only deal with the 
request sequences which contain at most 12 segments. Therefore, the number of 
possible sub-sequences will be: 

,10000
12

2
∑
=i

i  

which is much smaller than the original number. However, the result is still too 
large to be stored in memory. So to reduce the number of possible sub-sequences to 
check, we further define a cost function called “estimated performance gain” to 
represent the performance gain of each sub-sequence. The sub-sequences with the 
largest performance gains will be selected as beneficial virtual streams. The 
estimated performance gain (E(G)) of a virtual stream is defined as below. 

After the virtual stream is applied, we assume that the number of query 
messages becomes nQ’, the total number of requests becomes r’, and the number of 
requests served by the local buffers becomes rL’. Then the number of query 
messages nQ’ can be represented as: 

nQ’ = ((r’ – rL’) ⋅ nP). 

Let rB’ be the number of segments delivered by the backup service after the virtual 
stream is applied. Therefore, the estimated performance gain (E(G)) will be 

E(G) = (nQ – nQ’) ⋅ oQ – (rB’ – rB) ⋅ oS. (7) 

Based on the equation (7), we propose a new algorithm for virtual stream 
generation as follows: 

First, the lookup service finds the most M frequently accessed video segments 
in this scheduling interval. Then, it generates all possible sub-sequences by 
spanning the frequently accessed video segments. Since a request sequence can be 
rearranged, we only generate the sub-sequences by composing the segments as a 
nondecreasing order according to their publishing times. For example, let the 
popular segments in the current scheduling interval be A, B, and C, where A is 
published to the network before B and C. So the possible sub-sequences will be {A, 
B}, {A, B, C}, {B, C}, and {A, C}. Finally, the lookup service evaluates the 
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estimated performance gains E(G) based on the equation (7) and selects the 
sub-sequences with the largest F gains as the beneficial virtual streams. 

After the beneficial virtual streams are determined, the request sequences can 
be rescheduled with a rearranging strategy. Note that while rearranging a request 
sequence, each demanded video segment Ri cannot be scheduled to a time slot 
before its publishing time t(Ri), i.e., cannot cause a “time violation.” However, this 
procedure could also take a lot of computation overhead if the request sequence is 
irregular. To reduce the computation complexity, we let the lookup service sort the 
interest-based request sequences to a nondecreasing order on the segment 
publishing time t(Ri). Here we prove that sorting the request sequences in advance 
can decrease the probability of causing a time violation, as below: 

Consider a simple system that always supports only one video program at a 
time. Let Ri be the video segment requested at the ith time slot. Let t(Ri) be the 
publishing time of the segment Ri. (Note that if t(Ri) > i, a time violation will occur.) 
Let q’ be a sorted request sequence which contains d segments, i.e.,  

q’ = {R1, R2, …, Rd}, t(R1) ≤ t(R2) ≤ ... ≤ t(Rd). 

Let a segment Rk cause a time violation at time k. Assume that Rk can be 
interchanged with another segment Rp so that both Rk and Rp will not cause a time 
violation. Thus, the possible results can be derived as the following two cases: 

Case 1: p < k 
Because k > p and t(Rk) > k, we have t(Rk) > k > p. In this case, moving Rk to a 

previous slot, e.g., the pth slot, will still cause a time violation. 

Case 2: p > k  
In this case, Rk will not cause a time violation, but Rp will. Since t(Rp) ≥ t(Rk) 

and t(Rk) > k. According to these, we now have t(Rp) > k. This implies that moving 
Rk to a subsequent slot, e.g., the pth slot, will let the interchanged request Rp cause a 
new time violation at the kth time slot. 

Based on the above, we conclude that if a time violation occurrs in a sorted 
sequence, any interchanging will still cause a time violation. So to reduce 
computation overhead, we let the lookup service sort the interest-based request 
sequences in advance for virtual stream generation. 

4. SIMULATION RESULTS 

In this section, we evaluate the performance gain of the proposed virtual 
stream mechanism. As 0 illustrates, two platforms, in which one is a baseline 
platform and the other is an enhanced platform with beneficial virtual streams, are 
simulated to compare their system loads. Note that the baseline platform behaves 
just the same as a traditional P2P swarming system with an extensive number of 
small video programs. 
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Table 2. Additional symbols 
E(G) the estimated performance gain 
nQ’ the number of query messages after the virtual stream is applied 
rB

’ the number of segments delivered by the backup service after the virtual stream is applied 
r’ the total number of requests after the virtual stream is applied 
rL

’ the number of requests served by the local buffers after the virtual stream is applied 
F the maximum number of beneficial virtual streams to be generated in each interval 
vi the ith beneficial virtual stream, where 1 ≤ i ≤ F 
qi the request sequence of the ith client 
di the number of segments in the request sequence qi 
Ri the ith demanded segments in the request sequence qi, i.e, qi = {R1, R2, …, Rdi} 
t(Ri) the publishing time of the segment Ri 

Table 3. The two platforms for comparison 
Baseline platform Without beneficial virtual streams 
Enhanced platform (our scheme) With beneficial virtual streams 

In the core P2P overlays of both platforms, we let each client have 10 
neighbors, and, to limit the query range of a request, let the TTL of each query 
message be 5 hops. Let the length of each video be one hour long, and let each 
video be divided into 12 five-minute video segments. The execution time of each 
simulation is 24 hours. Let the scheduling interval for virtual stream generation be 
one hour long. In each scheduling interval, the lookup service will determine at 
most 10 beneficial virtual streams according to the proposed approach. In addition, 
the maximum length of a beneficial virtual stream is five segments long. We use 
the term “normalized load” to compare the system performances of both platforms: 

platform baseline in thecost  system
platform enhanced in thecost  systemload normalized =  

Since a user could change their viewing behavior at any time, we use a finite 
state machine to model the viewing behavior of each user, as illustrated in Figure 7. 
Under this finite state machine, a user can start from one of these five states (i.e., 
idle, live, review, serial-play, and interest-based), and then they can select to stay at 
the same state or go to another state in the next time slot.  

Also, we assume that the original video programs of both platforms are from 
three TV channels, and the target audiences of these TV channels are different. 
That is, users in different viewing states have the different probabilities on 
accessing these three channels. Here we let the channel access pattern be the same 
as the example illustrated in 0. In this example, if a user is in the Live state, the 
probabilities that they will request video programs from the three channels are 50%, 
30%, and 20% respectively. With the above viewing finite state machine and 
channel access pattern, the user viewing behavior can be modeled. 



N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007 

 43

Now we evaluate the system performance of the baseline platform and the 
enhanced platform under different request patterns: (1) “live-major”: with a high 
ratio of live viewing; (2) “serial-major”: with a high ratio of serial-play viewing; (3) 
“random-major”: with a high ratio of interest-based viewing. In this simulation, 
each client averagely issues 0.97 requests every five minutes, and the request 
distribution is determined by the viewing model mentioned above. We then vary 
the number of clients from 10,000 to 100,000 to investigate the normalized load 
under these settings. 

The simulation results illustrated in Figure 8 show that the system load of the 
serial-major can be improved the most, because the request sequences in serial-play 
mode easily generate both long and frequently accessed beneficial virtual streams. 
Besides, the system load of the interest-based mode still can be reduced by about 
20%, although it is not as efficient as the serial-play mode. The live mode cannot 
be benefited by the virtual stream mechanism because each client receives the latest 
frame so that the virtual stream mechanism cannot be applied. Therefore, in the 
following simulations, we only focus on the viewing behaviors based on 
random-major and serial-major mode, and we modify two key parameters, i.e., the 
number of the beneficial virtual streams in a scheduling interval and the maximum 
length of a beneficial virtual stream, to investigate the corresponding service 
performance. 

Serial
-play

Live

Idle

Review Interest
-based

 

Figure 7. The finite state machine to model the user viewing behavior. 

Table 4. An example of channel cccess pattern 
 Channel 1 Channel 2 Channel 3 
Live state 50% 30% 20% 
Serial-play state 20% 70% 10% 
Interest-based state 10% 30% 60% 



N. C. Lin et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 29-48, 2007 

 44

0

0.2

0.4

0.6

0.8

1

1.2

0 20000 40000 60000 80000 100000

num of user

no
rm

al
iz

ed
 lo

ad

live-major
serial-major
random-major

 

Figure 8. The impacts of request patterns. 
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(b) 

Figure 9. The impact of the number of generated beneficial virtual streams. (a) For 
random-major. (b) For serial-major. 
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Figure 9 depicts the simulation results by adjusting the maximum number of 
beneficial virtual streams generated in each scheduling interval time, where Figure 
9(a) and Figure 9(b) are simulated with a random-major and a serial-major request 
pattern respectively. These figures demonstrate that the more beneficial virtual 
streams imply a lower normalized system load, and the request pattern in a 
serial-major mode has a larger improvement than that in a random-major mode. 
However, once the number of beneficial virtual streams reaches a bound, e.g., 20 
streams if the number of users is 30,000, the improvement becomes insignificant. 
To derive the relation between the number of beneficial virtual streams and the 
performance gain will be one of our future works. 
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Figure 10. The impact of the maximum length of a virtual stream. 

In the final simulation, we modify the maximum length of a beneficial virtual 
stream from two segments to five segments. Figure 10 illustrates the simulation 
results, demonstrating that a longer virtual stream implies a lower normalized 
system load. This figure also illustrates that the normalized system load of a 
serial-major request pattern has a greater improvement than that of random-major 
request pattern, which still conforms to the above simulation results. 

5. CONCLUSIONS 

We have proposed a virtual channel platform, which organizes DTV client 
devices to virtually support each user with a dedicated channel according to their 
desires. We have introduced a peer-to-peer overlay network for sharing their 
resources, such as their buffers and network bandwidth, thus improving overall 
video availability. In addition, each video program is partitioned into many small 
segments before it is shared in this peer-to-peer network. However, such a 
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peer-to-peer delivery architecture would cause considerable query overhead, so we 
also have proposed a virtual stream mechanism which aggregates the popular 
connected video segments into a long video stream to reduce the number of query 
messages. The simulation results demonstrate that our virtual stream mechanism 
can significantly reduce the query overhead, thus system performance can be 
improved. Our future work is to develop a more efficient algorithm for generating 
beneficial virtual streams to further improve service performance. 
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