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ABSTRACT 
A method to detect and track moving objects with a Laser Range Finder (LRF) and a camera on a 

mobile platform is proposed. A LRF provides high-precision 2-D scene structure information, however, 
the small amount of measurement variation combined with the biases in odometry estimation makes it 
extremely difficult for pure laser-based algorithms to provide robust detection and tracking, especially 
when moving objects are close to a static background structure. In the proposed method, a hybrid 
tracker is developed which takes full advantage of the high-precision of a LRF-based Kalman-filter 
tracker and the flexibility of vision-based mean-shift tracker. With scan matching and background 
subtraction on laser-scanning data, moving objects are most-of-the-time tracked by a LRF-based 
Kalman filter. In circumstances where a vision-based mean-shift tracker provides better results, it takes 
over to maintain tracking until the LRF-based tracker is stabilized. Experimental results show the 
proposed method provides robust moving people detection and tracking on a mobile platform. 
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1. INTRODUCTION 

Moving object detection and tracking are two of the most critical issues 
within the field of computer vision study. They are extremely important in 
applications such as video indexing, human-computer interaction, autonomous 
surveillance, traffic monitoring and vehicle navigation, for the detection and 
tracking of interesting objects between frames for the purpose of performing 
advanced scene analysis. 

Conventional moving object detection techniques use fixed cameras (or other 
sensors) to monitor interesting scenes and build their appearance models for 
background subtraction. These techniques provide moving object detection, in most 
cases using fixed cameras. In some circumstances, however, such as 
intruder-following with a security robot, human interaction with a companion robot, 
navigation on an automatic vehicle or obstacle-avoiding on an intelligent 
wheelchair, cameras are no longer fixed in one location. The motion of moving 
platforms makes background modeling extremely difficult. Therefore, the 
increasing demand of mobile platform applications generates tougher issues for 
moving object detection and tracking. 

Many researchers have worked on the study of moving object detection and 
tracking for applications on mobile platforms. In 1991, Zhu (Zhu, 1991) was the 
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first to model a moving object’s motion, by the Hidden Markov Model, to avoid 
collision between a moving platform and moving objects. However, this algorithm 
was only examined in a computer-simulated environment, without actual 
deployment in real space. The rapid advances in laser sensor technologies 
encouraged researchers to have more and more mobile platforms taking advantage 
of a laser’s high-precision depth estimation to obtain spatial information of the 
outer environment. This led Kluge (Kluge, Koehler & Prassler, 2001) to build a 
wheelchair equipped with a laser range finder (LRF) to collect environment data. 
The data was then further analyzed by using a computer-graphic based method. 
Since Kluge’s method did not model the behavior of moving objects, it could not 
keep tracking moving objects while occlusions occurred. Fod (Fod, Howard & 
Matarić, 2002) utilized a Kalman filter while Lindström (Lindström & Eklundh, 
2001) adopted a Gaussian hypotheses to track moving objects. Their proposed 
methods solved object occlusion problems for a short period occlusion. 
Montemerlo (Montemerlo, Thun & Whittaker, 2002) proposed the conditional 
particle filter, a probability-based algorithm which tracks a large distribution of 
object locations conditioned upon a smaller distribution of robot positions over 
time. Since this algorithm used different particle filters to simultaneously estimate 
the positions of a robot and moving objects, it could localize their positions at the 
same time. However, when the number of moving objects is increased, mismatched 
tracking arose frequently because their methods used a nearest neighbor (NN) 
method for data association. To solve this problem, Schulz (Schulz, Burgard, Fox 
& Cremers, 2003) applied a Sample-based Joint Probabilistic Data Association 
Filter (SJPDAF) to replace the NN-based method; Almeida (Almeida, Almeida & 
Araújo, 2005) combined SJPDAF with a particle filter to estimate the non-linear 
and non-Gaussian behavior of moving objects. The state-of-the-art research may be 
referred to Wang’s work (Wang, Thorpe & Thrun, 2003). Wang integrated the 
study of Detection And Tracking of Moving Object (DATMO) and Simultaneous 
Localization And Mapping (SLAM) by using a probability-based method which 
estimates the uncertainty of the data obtained from a LRF and odometer. This 
framework seamlessly integrated robot localization, map reconstruction, and 
moving object detection while providing a robust result. In addition, Lee (Lee, 
Tsubouchi, Yamamoto & Egawa, 2006) considered different situations within the 
scan range of a LRF, such as entrance, exit, and occlusion, and modeled the human 
gait to track people by using an Extended Kalman filter. MacLachlan (MacLachlan 
& Mertz, 2006) mounted a LRF on a bus to detect cars and pedestrians. Moreover, 
radar and infrared sensors are frequently used on mobile platforms, but these 
devices are limited in depth estimation and spatial resolution thus providing only 
limited support for moving object detection and tracking in dynamic scenes. 

In this paper, we focus on the detection and tracking of moving objects using 
a camera and a LRF on a mobile platform. Pure vision-based approaches (Irani, 
Rousso & Peleg, 1997; Talukder & Matthies, 2004; Talukder, Goldberg, Matthies 
& Ansar, 2003) provide useful detection and tracking results in certain 
circumstances, but these approaches are sensitive to illumination variations, 
shadows, and parallax effects. Moreover, the time-consuming nature of these 
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approaches makes them difficult to operate in an unconstrained environment. On 
the other hand, a LRF is insensitive to the light effects and provides accurate depth 
information which forms discrete points on a 2-D horizontal plane in 3-D world 
space. A significant feature of a laser sensor is the instability of the emitting 
direction of laser rays. As shown in Figure 1, even though the robot is not moving, 
the scanning points circulated are unstable during different scans. A conventional 
way to cope with this problem is to give each scanning point an error-tolerant range. 
Since the LRF emits in a radial manner, it has a higher sampling rate when the 
object is close to the LRF. Therefore, in this situation a lower error-tolerant range 
should be set; contrariwise, the farther the object is, the higher the error-tolerant 
range. However, this strategy deducts the sensitivity advantage of LRF sensors. For 
example, when a moving object is close to a static background within the tolerable 
range, the moving object is regarded as a part of the background, resulting in failed 
object detection. Consequentially, we tried to make a camera and a LRF mutually 
beneficial to keep both their advantages while compensating for the limits of each. 
A framework that combines a vision-based approach with the use of a 
high-precision LRF to provide a robust moving object detection and tracking for 
mobile platform applications is therefore proposed. 

The proposed framework is described as follows: With scan matching and 
background subtraction on laser-scanning data, moving objects can be detected and 
then tracked by a LRF-based Kalman filter. However, LRF tracking frequently 
failed when the moving objects are too close to the background or stay for such a 
length of time as to be regarded as background. Although a LRF takes advantage of 
high-precision measurement in depth, it covers only a 2-D plane in a 3-D world 
space. In contrast, cameras capture the color information of the complete object 
with the absence of depth information. To keep both the advantages of a LRF and a 
camera while compensating for the limits of each, a vision-based mean-shift tracker 
(Comaniciu, Ramesh & Meer, 2000; 2003) is applied. The mean-shift tracker is 
widely applied in computer vision research; however, it requires an image template 
of the tracked object and its initial position, and only returns a 2-D position of the 
moving object on an imaging plane. Consequently, by integrating the information 
from both a Kalman-filter tracker in the laser-domain and a mean-shift tracker in 
the image-domain, a hybrid tracker is proposed. 

This paper is organized as follows: The problem definition and the proposed 
framework are described in Section 2. Experimental results are revealed and 
discussed in Section 3. Finally, a conclusion is presented in Section 4. 

2. MATERIALS AND METHODS 

The proposed framework uses a mobile platform with a LRF and a camera to 
detect and track moving objects. The system flowchart is illustrated in Figure 2. 
The observed data Ot={St, It} was obtained from the LFR and camera, where St 
denotes the calibrated laser scanning data and It is the image captured at time t. 
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Figure 1. The laser readings are unstable due to the small amount of measurement 

variations from LRF devices. The effects of these small variations are 
enlarged on mobile platforms while biases in odometry estimation occur. 
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Figure 2. Flowchart of the proposed framework. 

The coordinate of the raw data obtained by the LRF is computed by bearing α 
and range γ of a scan. According to the platform’s position and heading obtained 
from the platform’s odometry, the scan data can be transformed from the laser’s 
coordinate system to the world coordinate system. However, considering the 
measurement error of the odometry and the drifting effect caused by the platform’s 
wheels, the current scan data is aligned to the background model by using an 
iterative closest point algorithm (ICP) (Besl & McKay, 1992), a scan matching 
algorithm. While current scan and background model are aligned, candidate 
moving objects can be detected with background subtraction. 

Furthermore, since the camera and the LRF are calibrated, candidate moving 
objects detected by LRF can be projected onto the image plane. After data fusion 
on laser-scanning data and image, each point of the laser scan is projected to its 
corresponding position on the image, as shown in Figure 3. Meanwhile, a 
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background model Bt-1 is maintained using the laser-scanning data from time 0 to 
time t-1 by a local background modeling method. A Kalman filter is applied to 
provide moving object tracking on laser data.  

The measurement error of a LRF makes it difficult to distinguish moving 
objects close to static background, such as walls. In such cases, a vision-based 
object tracking methods such as a mean-sift algorithm is integrated to track moving 
objects on an image plane. Finally, a hypothesis management module which 
integrates a Kalman-filter and mean-shift is applied to manage hypothetical 
trajectories and track moving objects (Gong, 2005).  

The detail of each module is presented in the following subsections. 

2.1 Calibration and Fusion of An LRF and Camera 

The LRF and camera are rigidly attached to the mobile platform. With 
corresponding transformations TL and TC, the LRF and camera readings are 
transformed to the platform’s coordinate system for data fusion. As shown in 
Figure 4, every scan of the LRF consists of hundreds of laser rays and each laser 
ray is represented as a bearing parameter α and a range parameter γ. A laser point p, 
detected by a laser ray in 3-D workspace, is first represented using the platform’s 
coordinate system according to Equation (1) and then transformed to the camera’s 
coordinate system as pc by Equation (2): 
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Using a pinhole camera model, after camera calibration, the camera’s intrinsic 
parameters, focal length, principal point, and distortion can be obtained and results 
in a projection matrix TP (Hartley & Zisserman, 2003). With this projection matrix, 
a laser point pc on 3D space could be projected onto its corresponding 2D image 
coordinates (u, v) through the following equation:  
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(a)  (b) 

Figure 3. Data fusion of laser data and image. (a) The laser data represented by an 
occupancy-grid model and the field of view of the camera. (b) Fusing the laser 
data on the corresponding image frame. 

pdα

 
Figure 4. LRF and camera calibration. 

2.2 Local Background Modeling 

The occupancy-grid model proposed by Moravec and Elfes (Moravec & Elfes, 
1985) is the most widely used world-representation model in robotics. As 
illustrated in Figure 5, an occupancy grid describes a robot’s world as a two 
dimensional array of probability values. The occupancy-grid model is usually 
constructed by integrating the scan readings from LRFs, sonar, or infrared sensors 
installed on mobile platforms. In this model, each grid represents a user-defined 
discrete location marked as occupied or empty according to a priori observations. 
However, since the scan readings are discrete, readings on long-distance objects are 
much sparser than readings on close-by objects. This made it extremely difficult to 
maintain an accurate background model, especially for a far away scene structure. 

Centered on the LRF as origin, each grid (i, j) at time t is associated with an 
occupancy confidence ct which is updated along time with the following equation: 

),()1(),(),( 1 jiowjicwjic L
ttt ×−+×= −  (4) 
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where L
to  stands for the current observation from LRF and w is the adaptation rate. 

When an obstacle is observed at grid (i, j), it is marked as 1),( =jioL
t  for occupied. 

Otherwise, 0),( =jioL
t  for empty. In cases having higher confidence on historical 

observations, w is given a higher value to represent higher confidence than on the 
current observation. In our case, w is empirically set to 0.9. 
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Figure 5. Occupancy grid after 10 scans. 

In many cases, a patrolling robot moves freely in a wide area. It is unwise to 
maintain a huge or unlimited background model in the system memory. 
Applications such as moving object detection need only short-term information to 
obtain accurate results. Therefore, a local background model is implemented. 

Let the initial position of the robot (xG, yG) be the origin of the global 
coordinate system. A W×H-unit memory space is allocated to maintain the local 
background model. In each unit, the occupancy confidence ct is stored, and the 
correspondence between the global coordinate system and the local background 
model is estimated through the coordinate of the left-top corner (xL, yL) of the 
background model. To update the background model when the robot moves to   
(xR, yR), Equation (5) and Equation (6) are utilized, and the content of each unit is 
updated according to its spatial relationship to the left-top corner of the background 
model. 

GRL xWxx +−= )2/( , (5) 

GRL yHyy +−= )2/( . (6) 

2.3 Scan Matching 

Most mobile platforms rely on on-board odometers to estimate 2-D platform 
positions. However, the odometry measurement error and the drifting effect caused 
by platform wheels make odometry readings unreliable, especially in rotation 
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movement. Scan matching is a process that is frequently used to compensate for 
unreliable odometry readings and to align laser scans obtained at different times. 

Height
H

W

(xG, yG) (xL, yL) (xR, yR)

Robot

}{ tc  
Figure 6. Illustration of the local background model. 

The most popular scan-matching method is the iterative closest point 
algorithm (ICP) (Besl & McKay, 1992). ICP was originally a 3-D point registration 
algorithm applied widely in the computer vision community. After the seminal 
work by Lu (Lu & Mulios, 1997), ICP is utilized nowadays to align range scans 
and estimate robot motion. Figure 7 illustrates the procedure of ICP. First, as shown 
in Figure 7(a), the closest point from one data set to the other is identified. Second, 
as shown in Figure 7(b), the rigid transformation relating to the corresponding 
points is computed by a least-mean-square method. The algorithm then 
re-determines the closest point set and repeats until it converges to a minimum 
match between the two scans, as shown in Figures 7(c) and (d). 

Suppose the point set of a background model is denoted as A={a1, a2,…, am}, 
and the point set of a current scan is denoted as B={b1, b2,…, bn} while the robot is 
currently at c (xR, yR) where a, b, c∈R2. ICP registers both background and current 
data sets by finding the best least-mean-square matching. Detailed ICP iterations 
are summarized as the following four steps. 

Step 1. For each point ak from the data set A, find its closest neighbor point bk from 
the data set B., i.e. d(ak, bk) = min{d (ak, B)}. 

Step 2. Compute a transform T which comprises one rotation parameter and two 
translation parameters by using the least-mean-squares method. 

Step 3. Calculate the following objective function:  

∑ −=
=

m

i
ii bTa

m
Tf
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2)(1)( . (7) 

Step 4. Apply the transform T to the data set B. If the stopping conditions are 
satisfied such as that the cost function is smaller than a given threshold or 
the iteration number reaches a given number, then the algorithm goes to 
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step 5, otherwise it goes back to the first step to rematch the closest points 
of A from the updated B. 

Step 5. Since ICP corrects the measurement error of odometry, the robot’s position 
is then updated to )(' cTc = . 

(a)                             (b)

(c)                             (d)

 
Figure 7. Illustration of ICP. (a) Find the closest point from one data set to the other. (b) 

Calculate the transformation from the relation in (a). (c) Re-determine the 
closest point set. (d) The convergence.  

2.4 Hypothesis Management and the Hybrid Tracker 

After the scan matching adjustment, the differences between the background 
model and the most up-to-date transformed scan are marked as occupied units. A 
connected component algorithm is then applied to group those connecting units as 
candidates for moving objects. Each candidate moving object is hereby called a 
hypothesis for clarity (Gong, 2005). 

At the start of the algorithm we maintain a list of hypotheses in the memory. 
If a current hypothesis is similar enough to an element in the hypothesis list, this 
hypothesis will be associated with this element by updating it into the hypothesis 
list. Otherwise, this hypothesis is identified as a new element to be inserted into the 
hypothesis list. 

In this study, a hybrid tracker is developed to handle issues of hypothesis 
updating, as shown in Figure 8. First, a hypothesis t

i
t Cc ∈ , the i-th connected 

component at frame t, is compared with all elements in the hypothesis list 
},...,2,1|{ 1 njj

t == −HM , which maintains n possible elements while each element j
t 1−H  

records the history of the associated objects from time 0 to t-1, i.e. 
},...,,{ 1101

j
t

jjj
t −− = hhhH  where 2R∈h . Each element of hypothesis list j

t 1−H  has a status 
flag }|{1 ILS j

t =−  indicating the tracking domain. The status L means that the object 
is tracked in the laser domain, while I represents a tracking in the image domain. 
Meanwhile, each element j

t 1−H  maintains an image template j
t 1−T  for the possible 

need of a vision-based mean-shift tracking. 
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Figure 8. The flowchart of the hypothesis update. 

The image template j
t 1−T  is a patch extracted from the image according to the 

projected laser-scanning data j
t 1−h . The rectangle in Figure 3(b) is an example of the 

image template. When we track the moving object in the laser domain, a Kalman 
filter is utilized to predict the future position of each element of the hypothesis list 

j
t 1−H  at time t as )(~

1
j
t

j
t KF −= Hh . If i

tc  is close enough to the prediction j
th~  of an 

existing element j
t 1−H , that is, 1)~( ε<− i

t
j

t ch , i
tc  is then regarded as j

th , updating j
t 1−H  

to j
tH . 
If an element of the hypothesis list is not associated with any hypothesis of a 

moving object, it means that the object of the element may be out of the field of 
view, merged to the background, or not detected at the background subtraction 
stage, IS j

t =  is set and the mean-shift algorithm is evoked at the next frame. The 
mean-shift keeps tracking the moving object and updates the template j

tT  by its 
prediction j

t 1
~

−T . If a patch corresponding to a new hypothesis i
tc  is close to 

j
t 1

~
−T when a new frame comes, it means that the moving object is robustly detected in 

the laser domain and laser-based detection and tracking with Kalman filter is 
applied again before the updating of the element in the hypothesis list j

tH . The 
pseudo-code of the hypothesis management is listed in Algorithm 1. 

 



Y. Y. Chao et al. / Asian Journal of Health and Information Sciences, Vol. 2, Nos. 1-4, pp. 12-28, 2007 

 22

Algorithm 1: Hypothesis Management 
 
Input: Mt-1, Tt-1, St-1, Ct 

Output: Mt, Tt, St, 
 
for each element j, do 

if LS j
t =−1 , then 

)(~
1

j
t

j
t KF −= Hh  

if 1)~( ε<− i
t

j
t ch , then 

j
t

j
t SS 1−= , 

i
t

j
t

j
t cHH ∪= −1  

)( i
t

j
t eGetTemplat cT =  

remove 
i
tc  from Ct 

else 
IS j

t = , j
t

j
t 1−= HH ,

j
t

j
t 1−= TT  

end if 
else 
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j
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        LS j
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t cHH ∪= −1  
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t eGetTemplat cT =  

remove 
i
tc  from Ct 

else 
j

t
j

t SS 1−= , 
j
t

j
t 1−= HH , 

j
t

j
t TT ~
=  

end if 
end if 

end for 

for each 
i
tc  in Ct, do 

))(( i
tt InitHypoInsert cM ←  

end for 
 

3. EXPERIMENTAL RESULT 

To verify the proposed algorithm, a preliminary experiment is conducted by 
setting a JAI CV-s3200 CCD camera and a SICK laser on a Pioneer DX-3 mobile 
platform, as shown in Figure 9. The camera produces consecutive images with a 
320x240 resolution at 22 frames/per second, while the LRF provided 24 laser 
readings per second. A laptop is installed on the DX-3 to command its motion and 
connects to the camera and the LRF to perform the proposed algorithm. The results 
of the proposed hybrid tracker are demonstrated as follows. 

A rectangular lobby where three elevators are located separately on both sides 
and a person who walks zigzag are adopted as our experimental scenario, depicted 
in Figure 10. The circle is the initial position of the mobile platform. The square 
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grids are the laser scanning points, and the dotted line represents the person’s path 
starting at (a) and going to (l). In the experiment, the robot keeps moving forward 
and approaches the moving person. The positions (a)-(l) on the white dotted line 
corresponded to the images (a) to (l) of Figure 11. 

The white rectangles in Figures 11(a), (d), (f), (h), (i) and (j) are the results of 
laser-based Kalman filter tracking. When the walking person stands very close to 
the wall, the measurement error of LRF makes it difficult to distinguish this person 
from the wall with a pure laser-based algorithm. To solve this issue, a vision-based 
mean-shift tracker is integrated to form a hybrid tracker. The black rectangles in 
Figures 11(b) and (e) are the initial regions applied to the mean-shift tracker when 
the confidence value of laser-based tracking is below a certain threshold. The gray 
rectangles in Figures 11(b), (c), (e), (g) and (k) are the consecutive results of the 
mean-shift tracking. Figure 11(h) shows the hand-shaking process from 
mean-shift-tracking (gray rectangle) to laser-based (white rectangle) Kalman filter 
tracking. The mean-shift tracker matches its hypothesis to the nearest hypothesis 
maintained by the laser-based Kalman filter. Afterwards, the Kalman filter keeps 
tracking the walking person without the use of the mean-shift tracker until the 
walking person is too close to the wall again. 

To compare the performance of the proposed method, we tested the same 
video sequence by a pure-vision mean-shift-based tracker. Since an initial position 
and an image template should be provided to the mean-shift tracker, we contoured a 
rectangle manually on the frame when the moving person appeared, as shown in 
Figure 12(a). Figures 12(b) to (f) show some sample images in a short period when 
the person walks from position (a) to position (d) in Figure 10. Obviously, the 
tracker starts getting lost at frame #37 and diverges from the object to the 
background. The mean-shift tracker maintains an image template and updates it 
continuously. However, when the camera moves, noise caused by an unstable 
background misleads the mean toward wrong directions. As a result, the tracker 
loses the object. Another strategy of mean-shift is to use the same image template, 
the initial one, but this can not cope with appearance variations of the object under 
tracking. The mean-shift tracker only works well when the camera is fixed or when 
the camera is moving in a short period. 

4. CONCLUSION 

In this study, we propose a framework for people-tracking on moving 
platforms using a hybrid tracker. The hybrid tracker brings image information to 
solve the conventional laser-based object tracking problem. If the laser scanning 
data are reliable, the moving objects are tracked by Kalman filters. However, when 
the moving object can not be distinguished from the static background in the laser 
domain, a mean-shift algorithm comes into play to track the object in the image 
domain. As a result, different trackers are automatically applied in their most 
suitable circumstances to provide robust tracking results on moving platforms. 
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Figure 9. The testing platform with a CCD camera and a SICK LRF. A laptop connects 

all the devices to control the mobile platform and perform the proposed 
algorithm. 
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(l)

robot
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Figure 10. An illustration of the experimental scenario. A person walks zigzag and the 
moving platform keeps moving forward to approach the moving person. The 
white dotted line represents the human path starting from (a) to (l) and the 
corresponding images are shown from (a) to (l) of Figure 11. 

Laser

Camera

Laptop 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 11. The tracking results of the proposed method shown in the image domain. The 
figures from (a) to (l) correspond to the related positions from (a) to (l) of the 
walking person in Figure 10. The white rectangles are the results of 
laser-based Kalman filter tracking. The black rectangles are the initial regions 
applied to the mean-shift tracker. The gray rectangles are the consecutive 
results of mean-shift tracking.  

   

 

(a) (b) (c)  

   

 

(d) (e) (f)  
Figure 12. The mean-shift-based tracking results shown in image domain. (a) Frame #1. 

(b) Frame #11. (c) Frame #37. (d) Frame #46. (e) Frame #58. (f) Frame #77. 
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