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A New Computational Method for Quasi-TE Mode 
Effective Index in Rib Waveguides 
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ABSTRACT 
In this paper, we propose a new numerical method for solving a rib waveguide TE-mode problem. 

In the proposed method, the cross-section of the waveguide is divided into several regions and the 
refractive index profile and field distribution in each region are expanded into Fourier cosine series, and 
then are substituted in the wave equation. A second-order differential matrix equation is derived with a 
closed-form solution obtainable. Finally, with the boundary conditions being used, an eigenmode 
equation can be derived and solved numerically to give the modal indices. Here, the proposed method 
is used to deal with a silicon dioxide based rib waveguide. Numerical results show that the presented 
method is quite efficient, in terms of CPU time, in finding the modal indices accurately. The relative 
error of the modal index with the proposed method as compared that of the commercial software 
BeamPROP is less than 10-6.  

Key words: fourier cosine series expansion, rib waveguide, eigenmode equation, closed-form solution, 
Newton-Raphson algorithm. 

1. INTRODUCTION 

For more than twenty years, many researchers have directed considerable 
effort to computing the mode index of optical waveguides, which are the important 
parts of photonic integrated circuits. Many kinds of numerical methods have been 
utilized for the computation of modal fields and the modal indices of a rib 
waveguide. These methods include finite difference method (Kriezis & 
Papagiannakis, 1995; Hadley & Smith, 1995; Noro & Nakayama, 1996; Lusse, 
Stuwe, Schule & Unger, 1994) finite element method (Rahman & Davis, 1985; 
Kawano & Kitoh 2001; Koshiba, Saitoh, Eguchi & Hirayama, 1992), beam 
propagation method (Yevick & Hermansson, 1989; Kriezis & Papagiannakis, 1995; 
Liu, Yang & Yuan, 1993; Huang, Xu, Chu & Chaudhuri, 1992) and many other 
semi-analytic methods (Berry, Burke, Smartt, Benson, & Kendall, 1995; Burke, 
1989). Numerical methods based on finite element or finite difference basically 
discretize the transverse domain of an optical waveguide to induce an eigenvalue 
problem. 

In this paper, a new numerical approach is proposed to calculate the modal 
indices and modal fields of a quasi-TE mode of optical rib waveguides. In the 
method, the cross section of a rib waveguide is separated into four regions, in each 
of which, both the refractive index profile and the field distribution are represented 
as Fourier cosine series, respectively. In each region, a solution form of modal 
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fields can be derived from a second-order differential matrix equation. Similarly to 
other existing semi-analytic methods, the proposed method is quite efficient in 
computational time compared with the time-consuming finite-difference-based 
beam propagation method. The accuracy of finding the modal index depends on the 
number of terms used in expanding the aforementioned refractive profile (as well as 
the modal field) into Fourier cosine series. The method of expanding both 
refractive index profile and the field distribution into Fourier cosine series has 
proven to be relatively efficient and accurate in finding the modes of 
one-dimensional optical waveguides (Wang & Huang, 1999; Wang & Hsiao, 2001) 
(i.e., slab waveguides). This technique has been for the first time applied to optical 
rib waveguides here. Note that neither an effective rib waveguide nor mode 
expansion (for the rib region) is used by the proposed method. Furthermore, the 
index profile is expressed into a Fourier (cosine) series in each region and then 
substituted into the wave equation to obtain a corresponding matrix equation, from 
which an exact closed-form solution for the field can be found. The expansion of 
the field here is only one-dimensional and consequently results in N or M equations 
(not N×M equations as in the 2-D Fourier method (Henry & Verbeek, 1989)) to be 
solved. In Section two, the theory of the proposed matrix method is outlined for the 
cases of quasi-TE modes. The computational results are presented in Section three, 
where one can see the accuracy and efficiency the method provides. Finally, 
Section four concludes this paper. 

2. THEORY 

In this study the considered geometric structure of the optical rib waveguide 
is shown in Figure 1, where the width and height of the rib are denoted by w and h, 
respectively, and the thickness of the slab is represented by d. The refractive 
indices of the guiding, substrate and cover region in the structure are n1, n2 and n3, 
respectively. It should be noted that application of the theory outlined here is not 
strictly the case as shown in Figure 1, where homogeneity in composition is 
assumed throughout the rib and the slab. 

3n

1n

2n  
Figure 1. Geometric structure of the optical rib waveguide considered in this work. The 

refractive indices of the guiding region, substrate and cover are denoted by n1, n2 
and n3, respectively. w: rib’s width, d: slab’s thickness, h: height of the rib’s top 
surface. 
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In the analysis of the quasi-TE mode of the rib waveguide, the cross-section 
of the considered waveguide is divided into four regions, as shown in Figure 2. The 
coordinates y1 to y3 represent, respectively, the boundaries between two 
corresponding adjacent regions. The coordinates x1 and x2 are the positions of the 
two rib’s sidewalls. Clearly, for regions I (i.e., for 0 < y < y1), II (y1 < y < y2), and 
IV (y3 < y < y4), the refractive indices aren2, n1 and n3 (all of which are constant), 
respectively; while for region III (i.e., for y2 < y < y3), the refractive index n0(x) 
follows the distribution 

=)(2
0 xn 2

1n  ,   for 21 xxx <<  

= 2
3n  ,   for 10 xx <<  and 32 xxx << . (1) 

 
Figure 2. Dividing the cross-section of a rib waveguide into several regions in the cases of 

quasi-TE modes. y1, y2 and y3 represent the coordinates in the y axis, denoting the 
interface between regions.  
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n is the refractive index (a function of x and y) and β the propagation constant of a 
quasi-TE mode. 

Equation (2) is solved for each of the four regions as indicated in Figure 2. 

Note that for regions I, II and IV, n2 is constant and the term 
x

n

n ∂

∂
2

2

1  is zero. 

Therefore for these regions, Equation (2) reduces to  
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In solving Equation (3) for each of the three regions, we use the Fourier 

cosine series expansion ∑ Δ=
=
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cos)( ω , where the superscript i denotes a 

specified region (i = 1, 2 and 4 for regions I, II and IV, respectively.). For each 
region Equation (3) then reduces to 
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By equating all the coefficients of cosnΔωx (n = 0, 1, 2,….., N) in Equation (4) to 
zero, we obtain N+1 differential equations that can be expressed in a matrix form. 
For region I, the matrix equation turns out to be 
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The matrix equations for regions II and IV are, respectively,  
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where vector H3 is given as T
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The details of the derivation for Equation (8) are given in Appendix A. 
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Explicit solutions to Equations (5)-(8) can be written, respectively, as 
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Here in this subsection κi, γi, λi, and δi (i = 0, 1, 2,….., N) are the eigenvalues of 
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Using the six boundary conditions above, we can derive two matrix identities as 
shown below.  

0)()( =⋅−⋅ YLXK ββ ; (13) 
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0)()( =⋅+⋅ YNXM ββ . (14) 

Here vectors X and Y are defined as 
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Matrices K, L, M and N contain elements that depend on β. The details for the 
derivations of Equations (13) and (14) and the definitions of K, L, M and N are 
given in Appendix A. 

To solve for β, we rewrite Equations (13) and (14) as 
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Since there should exist a nontrivial solution for Equation (16), the following 
equation must hold. 
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where det{.} represents the determinant of a matrix. The equation in (17) is thus 
used to determine the modal index (which is equal to β/k0). A Newton-Raphson 
algorithm (Kublanovskaya, 1969) is quite efficient in solving Equation (17) and is 
used in this study. Once β is found, iφ  (i = 0, 1, 2,….., N) can be known (see 
Equation (A3) of Appendix A). Then bi (i = 0, 1, 2,….., N) becomes propositional 
to gi only (see Equation (A1)). From the equations in (A4) and (A5) of Appendix A, 
one can see that cicosθi and cisinθi depend on the coefficients gis (i = 0, 1, 2,….., N). 
The parameter ci and θi are both therefore a function of gis. The coefficients dis are 
also dependent upon those gis (i = 0, 1, 2,….., N), as can be clearly seen from 
Equation (A8) of Appendix A. In short summary, those gis are independent 
variables, which all the parameters bi, ci, di, and θi are dependent upon. Therefore, 
all the vectors H1, H2, H3 and H4 (see Equation 11) can be determined given a set of 
gis (i = 0, 1, 2,….., N). The field distribution of a quasi-TE mode can then be found. 

3. NUMERICAL RESULTS 
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Here we present numerical results for one example of rib waveguide. The 
proposed method is used to calculate the modal index of a silicon dioxide based rib 
waveguide which is indicated as structure 1 listed in Table 1. This section also 
presents some results obtained by using the 2-D Fourier method (shown in the 
parenthesis in table 2). In using the 2-D Fourier method, we modeled the field as 

∑ ∑ ΔΔ
= =

N

m

N

n
mn ynxme

1 1
)sin()sin( ωω  and then obtained an eigenvalue equation, in which 

the order of the matrix is N2. We ran the software BeamPROP, the 2-D Fourier 
method and the proposed method in the same PC with CPU 1.25MHZ. 

Table 1. The wavelength and the structural parameters of rib waveguide considered in this 
paper 

structure λ n1 n2 n3 w(μm) h(μm) d(μm) x1(μm) x3(μm) y1(μm) y4(μm) 
1 1.55μm 1.46 1.45 1.45 5 5 2 23 51 12 29 

The modal index of this single-mode waveguide for quasi-TE mode 
calculated by BeamPROP is 1.454667. The modal indices calculated by the 
proposed method are shown in Table 2. Comparisons between the results obtained 
by the proposed method and that obtained by BeamPROP can be seen in this table. 
Clearly, the neff s values calculated by the proposed method for N=38 are the same 
as the exact ones (which are obtained by BeamPROP). The CPU time for the 
proposed method is a fraction of a second to obtain such accurate results for 
quasi-TE mode. The 2-D Fourier method was also used to find the quasi-TE mode 
for this structure. The results for each N obtained by the 2-D Fourier method are 
shown in the parenthesis. Obviously, the 2-D Fourier method is quite 
time-consuming compared with the proposed method. The field distribution (for Hy) 
of the quasi-TE mode is shown by the contour drawn in Figure 3, where contour 
levels are at 10% intervals of the maximum field. 

 
Figure 3. The field distribution (Hy) of the quasi-TE mode is shown by the contour, where 

contour levels are at 10% intervals of the maximum field. 
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Table 2. Comparison of modal indices calculated by the proposed method, the 2-D Fourier 
method and the commercial software BeamPROP, for the quasi-TE mode of the rib 
waveguide of structure 1. For each N, the CPU time obtained by the 2-D Fourier 
method is shown in the parenthesis 

The proposed method Beam PROP 
N neff cpu(sec) grid sizes (μm) neff cpu(se`c) 

10 1.454377 0.06(0.16) Δx = 0.5, Δy = 0.1, Δz = 10 1.454657 0.8 
15 1.454594 0.08(0.95) Δx = 0.25, Δy = 0.05, Δz = 5 1.454665 7.5 
20 1.454674 0.12(4.51) Δx = 0.125, Δy = 0.025, Δz = 5 1.454667 27 
25 1.454667 0.16(14.94)    
30 1.454662 0.23(38.56)    
32 1.454663 0.24(64.49)     
36 1.454666 0.27 (100.7)      
38 1.454667 0.28(140.56)      

4. CONCLUSIONS 

Computing the mode index of the quasi-TE in optical rib waveguides is 
proposed in this paper. In the proposed method, we divide the cross-section of a rib 
waveguide into several regions and expand the modal field as well as the index 
profile into a Fourier cosine series; a second-order differential matrix equation for 
each region is then derived and a analytic solution form can then be readily found. 
By matching the continuity of the TE field at the interfaces between two adjacent 
regions, an eigenmode equation to be solved for modal indices is obtained. 
Numerical results demonstrate that the modal index can be found quite accurately 
and furthermore the CPU time spent in computation is much less than that when 
using the commercial software BeamPROP. 

It is worth noting that the proposed method can also be applied to a SOI 
(silicon-on-insulator) rib-type waveguide coupler as shown in Figure 4(a), or a rib 
waveguide with multiple layers in the rib section as shown in Figure 4(b). The 
computation of the modal fields and modal indices for these other types of 
waveguides are based on the same analysis, in which the cross-section is divided 
into multiple regions and a second-order differential matrix equation is derived for 
each of them. 

3n

1n

2n 5n

4n
3n
2n
1n
6n

 
Figure 4. Cross-sections of (a) rib-type waveguide coupler and (b) rib waveguide with 

multiple layers in the rib section. Here ni (i = 1, 2, 3, ….., 6) represents refractive 
index. 
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APPENDIX A 

Here we derive Equations (13) and (14). The boundary condition H1(y1) = 
H2(y1) leads to  

iii bg φcos=   i = 0, 1, 2, ….., N (A1) 

while H1(y1) = H2(y1) induces  

iiiii bg φβγκβ sin22 −=− , for i = 0, 1, 2, ….., N. (A2) 
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At the interface y2, the boundary conditions H2(y2) = H3(y2) and H2(y2) = H3(y2) 
correspond to, respectively, 

∑=−−−
=

N

n
nnniiii cYyyb

0
12

2 cos])(cos[ θφβγ  (A4) 

and  

∑ −=−−−−−
=

N

n
nnniniiii cYyyb

0

2
12

22 sin])(sin[ θβλφβγβγ   
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Equations (A5) and (A4) can combine to give (for i = 0, 1, 2, ….., N) 
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Yni (i = 0, 1, 2, ….., N) appearing above is the i-th element of vector Yn as defined 
by Yn = [Yn0, Yn1, Yn2, ….., YnN]T. The N+1 equations in (A6) can be put in a matrix 
form, i.e.,  
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⎥
⎥
⎥
⎥
⎥
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N
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N

N
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c
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θ

θ
θ
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θ

θ
θ
θ

sin
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cos

cos
cos
cos

22

11

00

10

22120

11110

00100

22

11

00

10

22120

11110

00100

 (A7) 

where Kij and Lij (i, j = 0, 1, 2, ….., N) are given by 
])(tan[ 12

22
iiijiij yyYK φβγβγ −−−−=  and 2βλ −= ijiij YL , respectively. Note 

that iφ  is a function of β. 
The boundary conditions H3(y3) = H4(y3) and H3(y3) = H4(y3) induce the 

following set of equations: 

inn

N

n
nni dyycY =−−−∑

=
])(cos[ 23

2

0
θβλ ; (A8) 

iinn

N

n
nnni dyycY δβθβλβλ −=−−−∑ −

=

2
23

2

0

2 ])(sin[  i = 0, 1, 2, ….., N. (A9) 

By substituting di of (A8) in (A9), we obtain  

∑ −−−−=∑ −−−−
==

N

n
nnnnii

N

n
nnnnni yycYyycY

0
23

22

0
23

22 ])(cos[])(sin[ θβλδβθβλβλ .

 (A10) 

The N+1 equations in (A10) can be rewritten in a matrix form, i.e.,  
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 (A11) 

Here Mij and Nij (i, j = 0, 1, 2, ….., N) are defined by 
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)](cos[ 23
22 yyYM jijiij −−−= βλδβ  and )](sin[ 23

22 yyYN jijiij −−−= βλδβ , 
respectively. 

In deriving Equation (A11), we have used the identities cos(x-y) = cosxcosy + 
sinxsiny and sin(x-y) = sinxcosy - cosxsiny in Equation (A10). Equations (A7) and 
(A11) are further put in a simplified form, i.e., 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡ −
0
0

)()(
)()(

Y
X

NM
LK
ββ
ββ

 

where the definitions of X and Y are given in Equation (14), while the definitions 
of submatrices K(β), L(β), M(β) and N(β) are self-evident by referring to Equations 
(A7) and (A11).  

To derive Equation (8) from Equation (2), we define 

∑ Δ=
∂

∂

∂
∂

=
=

N

n
n

y xny
x

H
x
n

n
yx

0

2

2 cos)(1),( ωφϕ . (A12) 

From the definitions of Fourier cosine series expansions for n2 and Hy, we have  

∑ Δ⋅Δ−=
∂
∂

=

N

n
n xnan

x
n

0

2

sin ωω  (A13) 

and 

∑ Δ⋅Δ−=
∂

∂
=

N

n
n

y xnyhn
x

H
0

3 sin)( ωω . (A14) 

From Equation (A12), which gives the identity
x

H
x
nnyx y

∂

∂
⋅

∂
∂

=⋅
2

2),(ϕ , we obtain 

∑ ∑ ∑ ΔΔ⋅ΔΔ=Δ∑ ⋅Δ
= = ==

N

n

N

n

N

n
nnn

N

n
n xnyhnxnanxnaxny

0 0 0

3

0
)sin)(()sin(coscos)( ωωωωωωφ .

 (A15) 

Note that the double cosine/sine terms on both sides of Equation (A15) can reduce 
to cosine terms.  

By equating all the coefficients of the cosine terms that have the same spatial 
frequency on both sides, we obtain a set of equations that can be put in the matrix 
form 

3)( QHyP =φ  (A16) 
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i.e., 

3
1)( QHPy −=φ  (A17) 

where matrices P and Q have been defined in Equation 9 and Equation 10; vector 
)( yφ  is defined by T

N yyyyy )](,),(),(),([)( 210 φφφφφ ⋅⋅⋅⋅⋅= . 
Substituting the Fourier cosine series of Hy and φ in Equation (2), we then 

obtain 

∑ ∑ +Δ−ΔΔ∑ −Δ
∂
∂

= ==

N

n

N

n
nn

N

n

n xnyxnyhnxny
y
h

0 0

32

0
2

32

cos)(cos)()(cos)( ωφωωω  

∑ =Δ−Δ−+Δ+∑ ∑
== =

N

n
n

N

n

N

m
nn xnyhxnmxnmyhak

0

32

0 0

32
0 0cos)()])cos(())[cos(()( ωβωω .

 (A18) 

By collecting the coefficient of cosnΔωx for each n (n = 0, 1, 2, ….., N) and 
equating it to zero, we can have an N+1 differential equations that can be written in 
the matrix form 

0)( 3
212

02
3

2

=Ι−−−+
∂
∂ − HQPWAk

y
H β . (A19) 

Here we have used Equation (A17) in deriving Equation (A19). 
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