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ABSTRACT
Protein structure alignment is of importance in protein study. In general, such a task can be

divided into two categories, i.e., global and local structure alignments. In this paper, one-dimensional
features are extracted first from the original protein structures. A hybrid approach combining dynamic
time warping and least squares adjustment is proposed for global alignment of protein 3D structures in
an iterative fashion, where dynamic time warping is responsible for coarse alignment of two structures
and least squares adjustment handles the fine matching of amino acid residues. The residuals of
matched pairs are utilized to calculate the weights to accelerate the convergence of coarse-to-fine
matching. The preliminary results have demonstrated the effectiveness and efficiency of the proposed
approach. However, there is still a room for improvement in terms of accuracy and memory usage.

Key words: protein structure alignment, dynamic time warping, least squares adjustment, coarse-to-fine
matching.

1. INTRODUCTION

Comparing three-dimensional protein structures is one of the most important
issues in structural proteomics and is helpful in solving the problems of protein
folding, motif finding, drug design, etc. In general, the task of structure alignment
is performed globally or locally. In global alignment, two protein structures are
usually aligned by an affine transformation to calculate the root mean square
deviation (RMSD) value of three-dimensional coordinates, while local alignment
aims at matching segments with maximum local similarity between two structures.
For example, Taylor and Orengo (1989) proposed an approach using double
dynamic programming for the global alignment problem. Subsequently, their
approach (Orengo & Taylor, 1993) was applied to the local alignment problem by
using the torsion (phi and psi) angles and solvent accessibility to accelerate the
computation of local alignment. Evaluating the structural environment of a residue,
however, is difficult. Later, Hiroike and Toh (2001) proposed a method to construct
a structural environment that was robust against circular permutation. Akutsu and
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Horimoto (2001) proposed a novel approach to multiple local structure alignment
by integrating physicochemical characteristics and structural information of protein
sequences to form a number of numeric profiles. These profiles were then recoded
back to some alphabetic sequences to facilitate the task of local alignment.
Lehtonen, Denessiouk, May, and Johnson (1999) developed a tool for the automatic
identification of regions of local structural similarity in unrelated proteins having
different folds, as well as for defining more global similarities that result from
homologous protein structures. Zemla (2003) presented the LGA method for both
local and global alignments in sequence dependent and sequence independent
modes. It also took into account both local and global structure superposition and
worked without a pre-assigned residue correspondence. Standley, Toh, and
Nakamura (2004) proposed an alignment method based on maximizing the number
of spatially equivalent residues and realigning structures using dynamic
programming base on the proximity of residues in the superposition.

In this paper, a hybrid approach is presented to perform global alignment
between two protein structures. For each protein, the feature along a
three-dimensional structure is extracted first to form a numeric profile. The feature
combines with the 3D coordinates to form a sequence of four-dimensional vectors,
which is then aligned with that of the other protein by using dynamic time warping.
The rough alignment is then refined by least squares adjustment. In the following
section, the proposed approach is introduced in detail. Section 3 gives the
experimental results and more discussions. Section 4 concludes the work with
future improvement.

2. PROTEIN STRUCTURE ALIGNMENT

On the basis of coarse-to-fine matching strategy, the proposed approach
consists of three major phases, i.e., feature extraction from protein structures,
dynamic time warping for coarse alignment of protein structures, and least squares
adjustment for fine matching of amino acid residues. The entire framework is
illustrated as a flowchart in Figure 1. Note that the extracted features as well as the
original 3D coordinates of protein structures are utilized simultaneously for
structure alignment. The advantage of using both original and extracted data is
twofold. The extracted features are capable of representing the local characteristic
that is more invariant to different coordinate systems, whereas the original 3D
coordinates are considered for fine matching and accuracy calculation. The steps
are given in more detail in the following.

2.1 Feature Extraction

Consider a structure of an amino acid sequence with a length of M, as
illustrated in Figure 2. Each node represents the three-dimensional coordinates of
C atom of an amino acid residue. A series of vectors vi,i-1 can be obtained by
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calculating the coordinate difference of any two adjacent residues i and i-1. This
series of vectors can further be utilized to generate a new series of vectors pi, where
each of which is the cross product of two consecutive vectors vi, i-1 and vi+1, i. Instead
of applying the cross product operation again to the series of vectors pi, the volume
pvi of a parallelepiped formed by any triplet of vectors (pi-1, pi, pi+1) is calculated as

)( 11 iiii ppppv   . (1)
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Figure 1. Flowchart of protein structure alignment.
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The reason of extracting the parallelepiped volume is obvious. It simply reduces the
original structure information in three-dimensional space to a profile in one
dimension. Note that the order of calculating the parallelepiped volume for each
residue should be consistent. Moreover, the value of the parallelepiped volume is
signed, depending on the directions of three vectors. It is worthy of mention that the
value of the parallelepiped volume becomes zero if five consecutive residues are
aligned along a straight line. In the event that residues are aligned with equal
intervals along a perfect helix, such as a spring, the volume profile then forms a
function of just a constant for each residue. In any cases other than these two
extreme examples, the parallelepiped volume is strongly capable of reflecting the
characteristic of a local structure. Without normalizing the norm of all vectors, the
value of the parallelepiped volume also indicates the extent of closeness among
local residues.

Figure 2. Extraction of parallelepiped volume.

After extracting the parallelepiped volume associated with each amino acid
residue, a protein structure is represented by a series of four-dimensional vectors
and expressed as xi = [x1i x2i x3i x4i]T and i M, where the first three
components are the 3D coordinates of the C atom of the ith amino acid residue and
the fourth component is the corresponding parallelepiped volume pvi. Since the
parallelepiped volumes of four amino acid residues, two on each terminal, cannot
be calculated, they are padded with pv3 and pvM-2, respectively. It is under an
acceptable assumption that the curvature at each residue near the terminals does not
alter dramatically.

2.2 Dynamic Time Warping

Once the profile of the parallelepiped volume along a protein sequence is
calculated, the task of structure alignment is carried out mainly by dynamic time
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warping (Rabiner, Rosenberg, & Levinson, 1978; Wang & Gasser, 1997). Two
similar sequences of four-dimensional vectors are expected to be aligned through
the introduction of expansion and contraction. Let two protein structures x and y
with length of M and N be denoted as x = {x1 … xi … xM} and y = {y1 … yi … yN},
respectively. An MN matrix D is then constructed, where the matrix element di,j

denotes the normalized Manhattan distance between xi and yj and will be described
later. Let a warping path P in the matrix D be a set of contiguous elements Pk = (i,
j), where k = 1, 2, …, K and min(M, N) K M + N–1. The relationship between
Pk and Pk-1 is defined as

),(),( 1 qpPjiP kk  
(2)

where 0 (i–p) 1, 0 (j–q) 1, i M, p M, j N, and q N. Therefore, the
aim is to find an optimal warping path having the minimum accumulated distance
between two structures by evaluating the recursive equation

),,min( 1,,11,1,,  jijijijiji DDDdD (3)

2.3 Least Squares Adjustment

Although dynamic time warping is a very advantageous approach relevant to
sequence matching problems and has been employed in a wide variety of areas, the
outcome of protein structure alignment using its standard version may not be
satisfactory. The reason partially lies in the ignorance of adjacency between
residues. In other words, the optimal warping path does not take into account the
fact that any little difference between two local structures that should be matched
will result in a deviation from a perfectly matched path. It is because the algorithm
always tries to find a path with the minimum distance (or difference). It turns out
that the aligned structures may contain one-to-many matching. To remedy the
potential problem mentioned above, the matched result is regarded as a rough
alignment, which provides a number of one-to-one matched pairs of points for
solving the transformation parameters.

In general, it suffices to transform protein structures by rotations and
translations. Without loss of generality, suppose there are Nm pairs of one-to-one
matched points extracted from the warping path P. The transformation z = T(y) can
be expressed as

1 11 12 13 1 1
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          

 (4)

The optimal transformation parameters can be solved by least squares adjustment
with redundant observations, which are the matched pairs of points. The energy
function is defined as
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After minimization of the energy function, the normal equations are constructed in
a matrix form as AX = B, where A is the 1212 design matrix, B is the column
vector of observation, and X is the column vector of 12 parameters. Hence, the
parameters solved at iteration t can be expressed as

1( ) ( ).T T
t

X A A A B (6)

The structure of the test protein needs to be transformed into the coordinate system
of the reference protein by using the solved transformation parameters. This step
provides an approximation between two coordinate systems for the following fine
matching. The result of fine matching is evaluated by a root mean square deviation
(RMSD) given as

2

1

1
.

mN

s s
sm
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N 

 x z (7)

The convergence criterion for the least squares adjustment is then to examine if the
relative change of the RMSD at the end of iteration t is within an insignificant
tolerance , i.e.,


 

t

tt

RMSD
RMSDRMSD 1 (8)

where the tolerance is given as 10-4 in this study.

2.4 Normalized Manhattan Distance Matrix

In the step of dynamic time warping for coarse alignment, searching the
optimal path is based on the normalized Manhattan distance defined as

4
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In other words, the Manhattan distance between any pair of xi and yj from two
proteins` respectively is normalized by four weights w = [w1, w2, w3, w4] defined as
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the inverse of the standard deviations of the matched pairs. At the beginning of
least squares adjustment, the weights are initialized as [0, 0, 0, 1], i.e., the first three
components representing the differences of 3D coordinates cannot be utilized due
to different coordinate systems, while the forth component is treated equally. As
two coordinate systems getting closer, the weights gradually reflect the importance
of the matched pairs.

3. RESULTS AND DISCUSSION

A program has been implemented in MATLAB on a laptop computer
equipped with a Pentium 1.6 GHz processor and 1.5GB RAM. All protein
structures in this study are obtained from the Protein Data Bank (Berman et al.,
2000). Twelve pairs of protein structures with various types of similarity measures
(Orengo & Taylor, 1993; Shindyalov & Bourne, 1998; Chen, Zhou, & Tang, 2005),
i.e., global similarity, local similarity, and difficulty to be aligned, were used here
for demonstration. Each pair of protein structures with PDB IDs, protein lengths (in
parenthesis), sequence identity, the final RMSD value, the number of aligned
residues Nm, and computation time are provided in Table 1. Furthermore, an
additional pair of proteins with completely different structures is arbitrarily selected
for comparison. These aligned results are also compared with those by the
incremental combinatorial extension (CE) method (Shindyalov & Bourne, 1998).
Figure 3 demonstrates four convergence profiles for different cases marked in gray
in Table 1, respectively. In both of the globally and locally similar cases, the
proposed approach rapidly converges to a stable state with a minimum RMSD. In
the third case where two proteins are identified as less similar and difficult to be
aligned, the alignment is not satisfactory and the final RMSD is larger. Two
proteins in the fourth case are totally different and should not be aligned correctly.
It is expected that the hybrid approach still tries to find a best match but the final
RMSD value is obviously higher. A further discussion about these three cases
(global, local, and difficult) is given below.

Table 1. Comparison of structure alignments for 13 protein pairs
Proposed CECase Test Reference Identity(%) Time

RMSD(Å) Nm RMSD(Å) Nm

Global 1DHFa (186) 3DFR (162) 27.8 7.48s 1.67 139 1.7 158
1ATPe (350) 2CPKe (350) 100.0 15.19s 0.37 334 0.4 336
1CDKa (350) 1CMKe (351) 100.0 24.20s 1.82 337 2.1 343
1BPI (58) 1BUNb (61) 34.5 0.79s 1.54 52 1.5 55

Local 3ICB (75) 4CPV (109) 24.6 1.66s 3.32 66 3.4 65
1PSM (38) 1LBD (282) 12.5 1.25s 3.40 29 0.6 24
2ASR (142) 2BRD (247) 7.7 5.47s 2.89 84 4.3 117
4ICB (76) 1CTDa (36) 29.0 0.56s 3.59 32 1.5 31

Difficult 1BGEb (175) 2GMFa (127) 12.1 4.35s 5.15 74 3.9 107
1CEWi (108) 1MOLa (94) 17.3 2.09s 2.50 55 2.3 81
1FXIa (96) 1UBQ (76) 9.4 1.18s 3.50 47 3.8 64
2AZAa (129) 1PAZ (123) 11.9 3.80s 5.87 50 2.9 84

Different 1XWM (217) 1Q3B (262) 13.8 28.93s 7.53 77 5.3 80
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Figure 4. Two protein structures with global similarity. Protein structures drawn in darker and lighter

gray in (c) represent the test and reference structures, respectively. (d) and (e) are the
corresponding profiles of pv values, and (f) is the matched path by dynamic time warping.
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Two globally similar proteins 1DHFa and 3DFR are compared, as shown in
Figure 4. The test protein in Figure 4(c) is transformed and superposed on the
reference one for comparison. The profiles of parallelepiped volume (pv) are shown
in Figures 4(d) and 4(e), respectively, where the x-axis indicates the residue index
along the protein. As shown in Figure 4(f), the final matched path has been
improved by dynamic time warping with least squares adjustment. The aligned
result is rather perfect and comparable with those of the CE (Shindyalov & Bourne,
1998) and VAST data banks (Gibrat Madej, & Bryant, 1996). Two locally similar
protein structures evaluated by Orengo and Taylor (1993) were selected for this
study as well. The result of alignment in Figure 5 is satisfactory but not as accurate
as that of the globally similar one.

(a) 3ICB (test) (b) 4CPV (reference) (c) aligned result

0 50 100 150
-3000

-2000

-1000

0

1000

2000

3000

3ICB Series Index

pv

(d) 3ICB

0 50 100 150
-3000

-2000

-1000

0

1000

2000

3000

4CPV Series Index

pv

(e) 4CPV

0 50 100 150
0

50

100

150

3ICB Path Index

4C
P

V
In

de
x

(f) matched path

Figure 5. Two protein structures with local similarity. Protein structures drawn in darker and lighter
gray in (c) represent the test and reference structures, respectively. (d) and (e) are the
corresponding profiles of pv values, and (f) is the matched path by dynamic time warping.

As mentioned previously and shown in Figure 6, two protein structures
1BGEb and 2GMFa reported in the literature (Fischer, Elofsson, Rice, & Eisenberg,
1996; Shindyalov & Bourne, 1998; Chen et al., 2005) are considered to be rarely
similar and difficult for alignment. The ambiguous result shows that the alignment
is a failure. After thorough examination of the experiment, two factors are
identified. First, the proposed approach treats protein structures as rigid bodies and
is not appropriate for the case of inexact alignment. A compromising solution for
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coordinate transformation may not be an optimal one. Second, too many small
pieces of matched structures are similar in terms of local features, not the actual
coordinates. Accordingly, these matched points are not representative enough to put
together for solving transformation parameters by using least squares adjustment.

More pairs of protein structures are provided in Figures 7, 8, and 9 for the
cases of global, local, difficult alignments, respectively. Compared with those by
the CE method listed in Table 1, the results of global alignment shown in Figure 7
demonstrate the effectiveness and efficiency of the proposed approach. In the cases
of local alignment shown in Table 1 and Figure 8, the unsatisfactory results reveal
that protein structures mainly consisting of α-helix structures will result in an
ambiguous matching. Protein structures identified to be difficult for alignment are
illustrated in Figure 9. The results show that these pairs are in fact aligned; however,
the RMSD values are larger. The obvious reason is due to the lack of elastic
matching for protein structures with less similarity.

(a) 1BGEb (test) (b) 2GMFa (reference) (c) aligned result
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Figure 6. Two protein structures are difficult to be aligned. Protein structures drawn in darker and

lighter gray in (c) represent the test and reference structures, respectively. (d) and (e) are the
corresponding profiles of pv values, and (f) is the matched path by dynamic time warping.

(a) 1ATPe (b) 2CPKe (c) aligned result
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(d) 1CDKa (e) 1CMKe (f) aligned result

(g) 1BPI (h) 1BUNb (i) aligned result
Figure 7. Three pairs of protein structures with global similarity. The first column indicates the test

structures, while the second one shows the reference structures. Protein structures drawn in
darker and lighter gray in the third column represent the test and reference structures,
respectively.

(a) 1PSM (b) 1LBD (c) aligned result

(d) 2ASR (e) 2BRD (f) aligned result

(g) 4ICB (h) 1CTDa (i) align2ed result

Figure 8. Three pairs of protein structures with local similarity.



H. W. Hsiao et al. / Asian Journal of Health and Information Sciences, Vol. 1, No. 3, pp. 261-275, 2006

272

(a) 1CEWi (b) 1MOLa (c) aligned result

(d) 1FXIa (e) 1UBQ (f) aligned result

(g) 2AZAa (h) 1PAZ (i) alig2ned result

Figure 9. Three pairs of protein structures identified as difficult to be aligned.

4. CONCLUSION

In this paper, a hybrid approach to the problem of global alignment of protein
structures has been presented. The representative feature of each amino acid residue
is extracted by calculating the volume of a parallelepiped derived from the
coordinates of five consecutive residues. Dynamic time warping is the key step for
approximate alignment. Least squares adjustment provides a chance to refine the
matched result, which then feeds back to the step of approximate alignment in an
iterative fashion. It is expected that two similar structures can be optimally matched
in only a few iterations. Thirteen pairs of protein structures with different measures
of similarity are aligned for demonstration in this paper. The preliminary results are
satisfactory. The proposed feature, in general, is representative, but cannot handle
the ambiguous cases of too many α-helix structures. More works regarding
accuracy evaluation instead of using the RMSD should be done soon. An automatic
mechanism for filtering out dissimilar structures is necessary as well. However,
there is still a room to improve the structure alignment in terms of accuracy and
memory usage. Attention will be paid to the problems when locally similar
structures in two proteins are located in different orders, which cannot be solved by
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dynamic time warping. Elastic or non-rigid alignment of two structures should be
addressed in the future work.
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