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ABSTRACT
We investigate how residue structural and physicochemical environment information, such as the

protein secondary structure and residue solvent accessibility could be used for protein structural classes
(all-alpha, all-beta, alpha/beta and alpha+beta) prediction. The residue environment information is
described by the residue environment profiles which are derived from a relative small set of 500 protein
sequences having a sequence identity less than 25%. It was demonstrated that this method is able to
obtain an accuracy of 49.2% for a 4-type class prediction of monomeric and non-disulphide-bonded
proteins, given the fact that none of the nonclassified protein sequences has a sequence identity higher
than 25%. This result is comparable to the amino acid composition method which obtains an accuracy
of 48% for a set of sequences having sequence similarity of less than 30%. The current approach has
several advantages: (1) it is a physical approach, (2) there is no adjustable parameter, and (3) it is
simple and efficient.
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1. INTRODUCTION

Some of the common approaches used to predict the structure of a protein are
homology modeling, knowledge-based fold recognition (threading) and the ab
initio method. It was noticed that homology modeling fails if the query protein
sequence and the target sequence have a sequence similarity below 25%. The ab
initio method is difficult to implement because of the enormous number of protein
conformations needed to search, and the inadequacies of the potential energy
function to measure the free energy of the protein solvent system (Fisher, Rice,
Bowie, & Eisenberg, 1996). A knowledge-based fold recognition method relies on
the extraction of statistical parameters from an experimentally determined protein
structure database and it has demonstrated some successes (Frishman & Argos,
1995; Sippl, 1995).

Although the sequence homology approach has some successes in predicting
the 3D structure, this approach is a non-physical method, that is, it does not take
into account the residues’structural information. It is known that the protein
structure is more conserved than the sequence (Chothia & Lesk, 1986); therefore,
prediction of protein structures based on structural similarity is less sensitive to
specific sequence information. There have been attempts to match sequences to
folds by describing folds in terms of the environment of each residue in the
structure. For instance, the environment was described in terms of local secondary
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structures, residue solvent accessibility, and the degree of burial by polar rather
than non-polar atoms (Bowie, Luthy, & Eisenberg, 1991). Several studies have
indicated that the environment approach could perform better than the purely
sequence-based method (Zhang & Kim, 2000; Chang, Cieplak, Dima, Maritan, &
Banavar, 2001).

In this paper, we propose to extract residue environment information from an
experimentally determined protein secondary structure database, such as DSSP
(Kabsch & Sander, 1983). As a first approximation, we neglect intra and
inter-chain interactions and consider monomeric and non-disulphide-bonded
proteins. The same approximation has been employed in other works (Chou &
Maggiora, 1998; Wang & Yuan, 2000). Then, five environment structure profiles
are computed, one for each individual structural class (that is all-, all-, and
according to the SCOP classification (Murzin, Brenner, Hubbard, & Chothia,
1995) plus the 4-classes structural profile where all four classes are included. These
profiles are used to score the query protein sequence to be modeled for
compatibility with the known structural classes. To demonstrate that the 3D
structure profile method is able to detect sequences compatible with a known
structural class, we align the query sequences with the environment of known
protein structural classes. This will establish the fact that the structure profile
approach is able to classify structural classes for distant sequences well below the
twilight zone (sequence similarity lower than 25%). Our investigation shows that
the residue environment information approach obtains a slightly better level of
accuracy than the amino acid composition approach (Wang & Yuan, 2000) for the
4-classes prediction.

2. METHOD

2.1 Non-redundant Date Set

A set of monomeric and non-disulphide-bonded protein sequences were
selected from the DSSP database by referring to the SCOP classification as our
input data set. The DSSP database utilizes the DSSP program to define secondary
structures, geometrical features and solvent accessible areas of proteins given
atomic coordinates in the PDB (Berman et al., 2000). In the SCOP database,
proteins are classified in a hierarchy according to their evolutionary origin and
structural similarity. According to the public available information, there were
20,619 PDB entries and 54,745 domains annotated in SCOP release 1.65. In our
study we considered four structural classes of proteins: all-proteins, all-proteins,
proteins and proteins (multi-domain proteins, membrane and cell surface
proteins, and small proteins could also be considered if needed).

We extracted the environment information, that is the residue solvent
accessible surface areas (buried (B), partly buried (PB) and exposed (E)) and
secondary structure (such as -helix,-sheet and coil) data from the DSSP
database. For instance, we used the following nine environment classes, that is, (B,
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P, E,C, in our study, where c stands for the coiled region. The cut-offs used in
defining buried (B), partly buried (P) and exposed (E) were taken to be 0~8%,
>8~38% and >38% of the maximal accessibility for the residues (Bowie, Clarke,
Pabo, & Sauer, 1990; Bowie et al., 1991; Rost & Sander, 1994).

It is known that the protein sequences deposited in the PDB could possibly
have a sequence similarity higher than 25%. In order to count the protein
contribution once, we filtered out protein sequences which had a sequence identity
higher than 25% because sequences with high similarity scores will be
over-represented in the profile calculation. The PDB_SELECT database (Hobohm,
Scharf, Schneider, & Sander, 1992; Holm & Sander, 1998) provides files of protein
sequences with less than 25% sequence similarity. We compared the
PDB_SELECT file and the DSSP sequences file. If there were more than one
sequence from the DSSP set that had a sequence identity greater than 25%, we kept
only one representative sequence and repeated this filtering process for all the four
structural classes.

2.2 Residue Environment Structure Profile

The 3D profile method uses structural information (Bowie et al., 1990; Bowie
et al., 1991). Instead of doing sequence alignment, the 3D profile method aligns a
sequence to a string of descriptors that describe the 3D environment of the target
structure. That is, for each residue position in the structure we determine:

1. solvent accessible surface areas (Lesk, 2001),
2. the local secondary structure (-helix, -sheet and coil), and
3. the fraction of surrounding environment that is buried, partly buried or exposed.

The basic assumption of this method is that the environment of a particular
residue is expected to be more conserved than the actual residue itself, and so the
method is able to detect more distant sequence-structure relationships than a purely
sequence-based method.

The probability, P(i, j), associated with residue j in an environment i (in our
study it is the solvent accessible area A) is given by

)(/),(),( jNjinjiP  (1)

where n(i, j) is the number of residues j with solvent accessible area A, and N(j) is
the total number of residues j.

For instance, one can compute the probability of having residue j’s solvent
accessible surface area in a buried, partly buried or exposed environment with one
of the three secondary structures. Thus, for each residue position the 3D protein
structure is assigned to one of the nine environment classes. The residue solvent
accessible surface area and secondary structure data are retrieved from the DSSP
database.

The score matrix element of the 3D residue structure profile, Mij, for
environment class i and residue j is given by;



K. C. Hsiao et al. / Asian Journal of Health and Information Sciences, Vol. 1, No. 3, pp. 332-342, 2006

335

 
 











tenvironmenanyinjresidueP
itenvironmeninjresidueP

M ij ln (2)

The denominator in Eq. (2) is obtained from the residue's frequency in the
DSSP database, where j is one of the nine environment classes; (B, P, E,C.

Given the scoring matrix for a class of proteins, we built a 3D profile for a
particular structural class using this matrix. That is, for each position in the known
protein structure we determined its environment class. The score of a particular
residue in this position is given by the score matrix value. For example, if the first
position in our structure has the environment class ‘buried,’the score of having
residue j in that position is the corresponding score matrix value MBj. Thus, if there
are n residues in the structure, we could build a profile for the known protein
structure. To align a sequence with a structural class, we align the sequence with the
descriptors of the 3D environment of the known protein structure. The optimal
alignment is defined by the following score function,
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where Q and T denote the sets of query and target sequences with lengths m and n
respectively, m<n and 0.5m<|m-n|<1.5m (if m>n one simply interchanges m and n
in Eq. (3)), where Q = {q1, q2, …, qm} and T = {t1, t2, …, tn} where qi and tj denote
the score matrix values, respectively. This alignment method takes into account the
residue’s neighborhood effect. Since the length of the protein sequences in the
alignment could be very different, we defined the normalized score function QT by

QT
QT

S

L
  (4)

where L denotes the overlapping length of the alignment. The value QT lies
between 0 and 0.9. A score value close to zero and 0.9 indicates a perfect match
and no match, respectively.

3. RESULTS

Among the 24,039 protein sequences from the DSSP, 5,483 are monomeric
and non-disulphide-bonded sequences. Also, among the 1,171 monomeric,
non-disulphide-bonded protein sequences, 578 sequences have less than 30%
sequence identity.

In Figure 1 we plotted the sequence identity versus the normalized score
value QT for the set of 578 sequences. It is evident from Figure 1 that all the
protein sequences have a sequence identity of less than 25%, except three outliers.
Most of the sequences’QT values lie between 0.50 and 0.70.
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These 578 sequences were chosen to be our target set T, and were used to
construct the environment structure profile and the four structural classes (4-classes)
structure profiles. After the monomeric, non-disulphide-bonded filtering process,
we were then left with 4,905 sequences (i.e. 5,483 minus 578), which serve as our
query set Q.

In Figure 2 we plotted the score matrix value Mij for buried, partially buried
and exposed environments against the 20 residue types (from hydrophoblic to
hydrophyllic) for the all-proteins.

Figure 1. A plot of sequences identity verse the normalized score value QT for a set of
578 monomeric, non-disulphide-bonded proteins.
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Figure 2. The structural class structure profile of all-proteins for (a) -helix structure, (b)
-sheet structure and (c) coiled structure.
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A large score value indicates a strong preference for the particular
environment whereas a small or negative score value indicates an aversion. It is
evident from Figures 2(a) through (c), the hydrophobic residues (I, V, L, F, C, M, A,
G and Y) have a large score for the buried state, that is, they were found to prefer to
reside in the buried state, whereas hydrophilic residues (acidic: D, E, basic: K, R
and polar N, Q) have a large score for the exposed state. These results are
consistent with the experimental determined hydrophobicity result (Kyte &
Doolittle, 1982). Due to space limitations, the all-, ,structural profiles
and the 4-classes structural profile were omitted.

In Table 1, we summarize the values of our predicted results for the four
structural classes. The second column lists the different type of structural classes,
the third column displays the total number of sequences in the query and target sets,
and the fourth, fifth and sixth columns summarize our results using different QT

cut-off score values, that is, 0.5, 0.6 and 0.9. The matching column indicates how
many sequences were assigned to a structural class correctly, and the ratio column
shows the prediction accuracy percentage.

To test the validity of our approach, we divided the 578 sequences into two
parts randomly, one contained 78 sequences and the other contained 500 sequences.
The 500 sequences were chosen to construct the environment structure profile as
well as the 4-classes structure profiles. At the ΔQT < 0.90 level it was found that 30
out of 61 sequences were assigned to the correct structural class, which is a
prediction accuracy of 49.2%. The other 17 sequences (from the set of 78
sequences) were not counted since they belong to other SCOP classes (such as
multi-domains or membrane proteins). From the column of QT <0.6 in Table 1, we
achieved a slightly lower prediction accuracy of 47.8%. This means that the result
did not degrade as QT increased, which indicates that the current approach is
robust against sequence alignment.

The third row summarizes the structural classes prediction accuracy using the
578 sequences as our target set and the 4,905 sequences as our query set, and it was
found that we achieved a 44.6% prediction accuracy at theΔQT < 0.90 level.

Table 1. A summary of the structural classes prediction for sequences of less than 25%
identity, all the monomeric, non-disulphide-bonded sequences, the four structural
classes and the 4-classes

ΔQT < 0.50 ΔQT < 0.60 ΔQT < 0.90
1 Q : T

matching ratio matching ratio matching ratio
2 <25% 78: 500 4/7 57.1% 11/23 47.8% 30/61 49.2%
3 All 4,905 : 578 418/528 79.2% 616/954 64.6% 1607/3603 44.6%
4 all- 4,905 : 160 136/181 75.1% 221/372 59.4% 1414/4816 29.4%
5 all- 4,905 : 126 86/109 78.9% 140/274 51.1% 1762/4785 36.8%
  4,905 : 91 34/34 100.0% 42/51 82.4% 1862/4749 39.2%
  4,905 : 127 97/104 93.3% 132/235 56.2% 2086/4835 43.1%
8 4-classes 4,905: 504 349/410 85.1% 479/695 68.9% 1950/4892 39.9%
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In Figure 3 we plotted the sequence identity versus the normalized score
value QT for the set of 4905 sequences. It is evident from Figure 3 that most of the
protein sequences have a sequence identity of less than 25% and the sequences’QT

values lie between 0.50 and 0.80.

Figure 3. Sequences identity versus the normalized score value QT for a set of 4,905
monomeric, non-disulphide-bonded proteins.

The fourth, fifth, sixth and seventh rows summarize the structural classes
prediction accuracy using the individual score matrix. It was found that our
approach could achieved a 29.4% to 43.1% prediction accuracy. This prediction
accuracy could possibly increase if a larger training set were used.

The eighth row summarizes the 4-classes prediction accuracy using the 504
sequences as our target set (only all-, all-, and proteins were selected
and trained), and the 4,905 sequences as our query set. It was found that a 39.9%
prediction accuracy was achieved, which is the same level of accuracy as the all-,
all-,  and prediction. This result suggests that using the 4-classes
structural profile gives the same level of prediction accuracy as the individual
structural class profile.

At a first glance, it seems that the prediction accuracy is a bit lower since
there were reported accuracies as high as 70% by using the amino acid composition
approach (Chou & Maggiora, 1998). However, it was pointed out (Wang & Yuan,
2000) that knowledge of amino acid composition alone cannot lead to a success
rate higher than 60% for a 4-type class prediction. The main reason for this was due
to preselection of query sets in the previous works.

From Table 6 of Wang and Yuan (2000), the authors had obtained an average
accuracy of 48% for a 4-type class prediction, whereas a slightly better prediction
accuracy of 49.2% was obtained in the present study. We notice that there is a
major difference between our training set and the set used in Wang and Yuan
(2000), in which the authors used single domain proteins for their training. It is
known that proteins can have more than one domain, hence such an assumption is
not valid in general. We do not make such an assumption in this work.

Furthermore, a comparison of our results with those reported by Li, Wang,
Fan, & Wang (2003), indicated that the present work achieved a better level of
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accuracy (49.2% versus 34.9%; see Table 2 in Li et al. (2003)) than the
amino-acid-grouping scheme assuming an eight (N=8) amino acid groups
calculation. For the case study of nine (N=9) amino acid groups, no data was
reported by Li et al. (2003). In the case of ten (N=10) amino acid groups
calculation, the work by Li et al. (2003) achieved a better level of accuracy than our
work. However, the number of protein sequences that could be assigned to the 
class is rather low. For instance, among the 30 testing protein sequences only two
are identified as belonging to the class for N=10, 11 and 12.

6. DISCUSSION AND CONCLUSIONS

We investigate how residue structural and physico-chemical environment
information, such as the protein secondary structures and residue solvent
accessibility, could possibly be used for protein structural classes (all-, all-, 
and ) prediction. The residue environment information is described by the 3D
residue environment profiles which are derived from protein sequences having a
sequence identity of less than 25%.

The score values of the environment profiles for all-alpha, all-beta, alpha/beta,
alpha plus beta proteins and the 4-classes are computed. We apply this approach to
monomeric and non-disulphide-bonded proteins, and demonstrate that this
approach is able to predict structural classes with an accuracy of 49.2%, given the
fact that none of the nonclassified protein sequences have a sequence identity
greater than 25%. Our result is slightly better than the amino acid composition
method and the amino-acid-grouping method for the eight amino acid groups
calculation.

The current approach has several advantages: (1) it is a physical approach, (2)
there is no adjustable parameter, whereas composition models have to decide the
optimal length of the subsequences, and (3) it is simple and efficient. There are
several areas where we could extend our analysis: (1) extend the size of the training
set from 578 to about a thousand, (ii) improve the alignment scoring function by
considering a sliding window of size three, that is, replace |qi-tj| in Eq. (3) with
(|qi-1-tj-1| + |qi-tj| + |qi+1-tj+1|)/3, taking into account the residue’s neighborhood
effect, and (3) introduce affine penalty in the alignment.
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