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ABSTRACT

This paper presents a two-phase automatic snake algorithm for the segmentation of multiple
objects from noisy or cluttered backgrounds. Traditional snake algorithms are often limited in their
ability to process multiple objects and are required to have manually-drawn initial contours and fixed
weighting parameters. Our agorithm features two phases: (1) the active-points phase and (2) the
active-contours phase. In the first phase, grid points evenly distributed in the image are attracted and
moved to form clusters near object boundaries. These clustered active points are then analyzed to
obtain convex polygons as initial snake contours in the second phase, where a no-search movement
scheme with space-varying weighting parameters is employed. Both the kinetics of active points and
deformation of active contours accept our proposed adaptive gradient vector flow (AGVF) field as the
contracting forces. Experiments show the stability of the AGVF field and good performance of our
snake algorithm in segmenting multiple objects from noisy or cluttered backgrounds.

Key words: image segmentation, active contours model, deformable models, snake model, boundary
detection, gradient vector flow.

1. INTRODUCTION

Segmentation has been an important technique for image anaysis and
understanding for quite a long time. Basically, segmentation can be categorized
into two types of algorithms. edge-based and region-based. Edge-based
segmentation puts emphasis on detecting significant gray-level changes near object
boundaries, while region-based segmentation lies great stress on searching areas of
uniform features like gray-value, texture, etc. In this research, we will highlight the
edge-based segmentation algorithm and focus on active contour models that have
been applied to object boundary detection in the past decades.

The active contours model (also called snakes) was first proposed by Kass,
Witkin, and Terzopoulos (1988) for object boundary detection. They applied an
energy minimizing function, a weighted combination of interna and external
energy, to a deformable contour so as to approach the true object boundaries. The
internal energy controls intrinsic continuity force of the contour itself, while the
external energy governs the attraction force, such as image gradients, that directs
the contour movement. By minimizing the energy function, each snake contour
point iteratively searches its new position to approach object boundaries. The
model proposed in Kass et al. (1988) performs a global search to optimize the
energy function. Later, a number of strategies were proposed to reduce the
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computational complexity of snakes (Williams & Shah, 1992; Lam & Yan, 19943,
1994b; Mirhosseini & Yan, 1997). These methods are mostly based on a ‘greedy’
strategy which searches local 8- or 4-neighbors, instead of the global optimization,
to speed up the convergence of snakes. In Wong Yuen, & Tong (19983), a
terminating criterion based on contour length was proposed to enhance the stability
and reliability of convergence.

In most technical literature, snake models were developed in terms of internal
and external energy items plus combining some constraints for more effectiveness
and accuracy. For example, Pardo, Cabello, and Heras (1997) proposed adding an
exponential item to the internal energy term to control the movement flexibility of
snake points in model-based segmentation of CT scan images. Their algorithm also
modified the external energy term by adding gradient, intensity, and edge items to
avoid false convergence into local minima. In Lam and Yuen (1998), internal
energy was modified to minimize changes in length and curvature between
temporal active contours for moving/rotating object tracking. In Kang (1999), the
algorithm constrains the internal energy by enforcing the successive snake points to
have similarity in local motion, which avoids disordered snake movements. In
Pardo and Cabello (2000), a priori knowledge of edge segments was incorporated
into the external force, making the snake less sensitive to initial conditions. In
Davison, Eviatar, and Somorjai (2000), the authors added additional energy items
to the snake model, e.g., the area energy that causes the snake to either expand or
contract as awhole and the symmetry energy that prevents unphysical departures of
boundaries from symmetry.

One of the drawbacks in traditional snake modelsis heavy sensitivity to initial
contour conditions. In other words, the initial contour must be manually set to be
close to the object. Another problem is that snakes have difficulty approaching the
concave parts of the object boundaries. In Yuen, Wong, and Tong (1996) and
Wong, Yuen, and Tong (1998b), an iterative split-and-merge procedure was
proposed to solve this problem. In the split procedure, a snake is divided into a
number of segments by control points defined by large gradient changes. Then
those segments, classified as not being near object boundaries (according to the
externa energy information), are moved by the normal forces to approach the
concave regions of the object. In the merge procedure, al segments are merged
together to recover the closed contour. Ji and Y an (2002a, 2002b) added a gradient
potential energy term to the snake function, which forms an additional force to
attract contour in areas short of boundary features. Nevertheless, if the initial snake
is far from true object boundaries or the image is not abundant with edge or
gradient information, the algorithms proposed in Yuen et al. (1996), Wong et al.
(1998), and Ji and Y an (2002a, 2002b) will not approximate true object boundaries
accurately. To solve these problems, Xu and Prince (1998) proposed a gradient
vector flow (GVF) field as an externa force in the snake model. The GVF field is
obtained by diffusing large gradients from near object boundaries to other areas. In
such a way, even the initial snake is far from true object boundaries, it can also be
attracted by the GVF field. The efficiency of gradient diffusion depends on a
regularization parameter that must be carefully fine-tuned by users. In a part of this
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paper, we propose an adaptive gradient vector flow (AGVF) field algorithm that
can be automatically fine-tuned according to image contents. Our algorithm is also
proven to be robust in some areas of noisy images from the experiments.

All snake processings mentioned above require initial contours and
manually-adjusted weighting parameters between the internal and external energy
terms. Often they cannot process multiple or annular objects. Y uen, Feng, and Zhou
(1999) proposed an automatic initialization algorithm for contour detection. Their
algorithm radiates a series of straight lines from the image center of gravity. Then
the point with the largest gradient on each radial line is selected as the feature point.
For multi-object detection, these feature points and the center of gravity constitute
the initial contours. However, their initialization algorithm can only detect multiple
objects spreading around the center of gravity and will fail when applied to
annularly shaped objects or multiple objects located along one radial line. Matsuda
et a. (2000) proposed an active net algorithm to detect target regions. The active
net is a rectangular network, in which the lattice points are attracted subject to
consistency in color attribute. As the authors mentioned, the active net has
difficulty dealing with multiple targets in an image. In Velasco and Marroquin
(2003), the authors generated initial particles (seeds) in areas with larger gradient
magnitude for automatic initialization. This introduces another issue: that of how to
select the threshold values of gradient magnitude for varied images.

The level set method (Osher & Fedkiw, 2001; Deng & Tsui, 2002; Precioso &
Barlaud, 2002) has recently been shown to be a robust, accurate, and efficient
technique for image segmentation. This algorithm usually starts from a small circle
or even a point within the desired contour and tracks the evolving contour
movement with a certain velocity function derived from image gradient and
geometric properties. One of the drawbacks of level set techniques is that they
require considerable thought in order to construct appropriate velocities for
advancing the level set function. Although level set methods provide less sensitivity
toinitial conditions, they are still required to give initial points or circles which are
inside or outside the target contours. Furthermore, the computational cost is high
(Precioso & Barlaud, 2002) and results are not good for open or broken contours.

In this paper, we propose a new automatic initialization algorithm based on an
AGVF field, which is an extension of the previous study (Chuang & Lie, 2001).
The active-contours processing is developed to accurately detect boundaries of
multiple or annular objects based on our previous fast snake model (Lie & Chuang,
2001). Unlike the watersnake proposed by Park and Keller (2001) in which snakes
must have the aid of watershed transformation to obtain snake zones in advance,
our proposed algorithm is a pure snake processing with automatic initialization.
Our method is featured as a fast, accurate, and fully automatic object segmentation
technique.

In Section 2, we address some basic snake models as necessary backgrounds.
In Section 3, the proposed fully automatic segmentation algorithm based on the
AGVF field is described. In Section 4, simulations and performance analysis are
demonstrated. Finally, Section 5 draws some conclusions.
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2. SNAKE BACKGROUNDS

The traditional snake model is a conjunction of internal and external energy,
by which a contour is animated and deformed towards object boundaries.
Principally, the minimized internal energy maintains smoothness and compactness
of the contour shape, but causes degeneration to a single point in the extreme case.
The minimized external energy however adjusts the contour to be consistent with
the environmental status where it is located. They can be considered as two forces
that guide the snake to move. The mode is generally described to be an
energy-minimizing function

E e = [ En(W(9) + En (U905, ()

where v(s) is the active contour, arc length s<[0.0,1.0], and Ej and E are the
internal and external energy, respectively. The internal energy is further defined to
be

.o =5 @O + AV, @)

where a(s) and A(s) are weighting parameters and vg(s) and v«(s) are the 1% and 2™
derivatives of v(s) to represent the continuity and stretch forces of the contour. Eey
is often defined to be the negative of image gradient magnitudes:

E.. =-VI(y)f o E ==[V(G, *1(xy)] ?)

where I(x, y) represents the image, V is the gradient operator, and G, is the
Gaussian filter with standard deviation o . Obviously, object boundaries that often
have larger gradient magnitudes will lead to a smaller external energy status. This
moves snake contours towards the object boundaries when the external energy is
minimized. Overall, the snake model represents a compromise between the internal
and external energy statuses via the weighting parameters.

During the energy-minimizing process, the previous greedy agorithms
(Williams & Shah, 1992; Lam & Yan, 1994a, 1994b; Mirhosseini & Yan, 1997)
adopt a local search scheme instead of global optimization. Each snake point i
searches its next position among m-neighbors by comparing the snake energy
EI

'snake, j .

Ere,; = () Ebo | + BA)Ebyy,; +7() Elage, (4)
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wherej = 1, 2, ..., mrepresents the index of a neighborhood (m is the number of
neighbor points), Een; and Euw,; correspond to the continuity and curvature
(stretch) forcesin the internal energy, Eimg; isthe external energy, and afi), A(i),
and y(i) are weighting parameters which are possibly position-dependent. The
computational complexity is thus reduced. However, the snake contours become
more sensitive to local noise.

On the other hand, an active contour model based on the GVF field (Xu &
Prince, 1998) is less sensitive to the initial contour conditions. The GVF field is
defined to be a field of vectors. Each vector V(x, y) = ( p(X, ), q(x, ¥)), for any
image pixel (X, y), is computed by minimizing the energy function:

g:jju(p§+p§+q§+q§)+\Vf\2N—Vf\2dxdy, ©)

where VT is the gradient of the edge map f derived from the input image 1(X, y), ¢ is
a regularization parameter, and the subscripts represent partial derivatives with
respect to the x and y axes. After the minimization process, V(X, y) will approximate
Vf where it is large and be smooth elsewhere, i.e., the gradients are diffused from
object boundaries to homogeneous regions. Each GVF vector will point towards the
object boundaries even if the currently considered pixel is far from them. The GVF
field is then adopted as the external energy term for stronger resistance to noise
than the traditional gradients only. Consequently, the snake model based on the
GVF field can approach object boundaries even if the initial contour is located far
from objects.

3. THE PROPOSED AGVF AND TWO-PHASE SNAKE
PROCESSING

Our new multi-object segmentation scheme is composed of two phases: (1)
the active-points phase and (2) the active-contours phase. The block diagram of the
proposed scheme is shown in Figure 1. It can be considered as a coarse-to-fine
segmentation method. In the first phase, approximate positions of the object
boundaries are automatically searched to form the initial contours for following
snake refinement. This work makes manual setting of initial contours unnecessary
and is also suitable to multi-object cases. In the second phase, each contour will be
deformed to approach object boundaries progressively. Both phases are based on
the AGVF field.

3.1 Adaptive GVF (AGVF) Field

As mentioned in Xu and Prince (1998), the goal of GVF field is to diffuse
gradients of edge responses into the whole image so that the external forces
towards object boundaries can be effective even for distant pixels. In Eq. (5) the
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energy ¢ consists of two terms. The first term is related to the smoothness of the
resulting GVF field (smaller value for smoother distribution). The second term
computes errors between the G\éF field V(x, y) and the original gradient of edge Vf.
Since the weighting of [V—Vf | is sgquarely proportional to the gradient magnitude
[Vf |, it will dominate the error where |Vf | islarge (i.e., V(X, y) will be approximate
to Vf ). The parameter x controls the trade-off between these two terms. For noisy
images, one should increase « to enhance the smoothness of the GVF field, but this
will simultaneously cause degraded approximation near object boundaries. Hence,
how to give a proper regularization parameter x will confuse most of the users. In
our proposed AGVF field, the weighting parameters are adaptively computed from
Vi, i.e., they are space-varying. First, the r-order magnitude of the edge gradient,
\%i |r, islinearly mapped to the interval [0,1]. That is

|VE(, ) [ —min{| VE (x, y) [} (6)

M) = a1V (%) T3 —min{ IV (x ) T3
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Figure 1. Block diagram of proposed two-phase snake processing scheme.

The power magnitude r istested in the interval [0.1, 5] with an increment 0.1 and it
isfound that r = 2.8 has the best performance. Therefore, r is empirically chosen to
be 2.8 in subsequent experiments. This step is to normalize the weighting functions
in the proposed AGVF field so that they can adapt to images with obscure object
boundaries. We denote the weighting functions of the first and the second terms to
be x(x, y) and A(x, y), respectively. Then Eq. (5) can be rewritten as

&= {06V + PL+ 6 + ) + 0% Y) Voo — V[ cxdy, )
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where
C1-w(x,y)
(X, y)——4 , (8)
and
A% y) =wW(X,Y) . 9)

The convergence of the AGVF field can be reached when the energy value is
(within a threshold) further minimally decreased. Basicaly, the main goa of this
iterative process is to diffuse gradients to form the force field al over the image.
Our AGVF field utilizes the normalized gradients of edge (i.e., w(x, y)) as the
weighting parameters between the smoothness and the gradient-approximating
terms. Normally, the gradient of edge |Vf | is small in homogeneous regions and
large near object boundaries. Hence, the desired AGVF field will put great
emphasis (up to x = 0.25) on the smoothness term in homogenous regions (where
w~0) and on the gradient-approximating term elsewhere. These two weighting
functions x(x, y) and A(x, y) form alinear function A(X, y) + 4x(X, y) =1.0 and expect
to dominate each other in specific regions. These characteristics of the AGVF field
make a higher resistance to noise than the traditional GVF field. After the AGVF
field is obtained, it is used for both active-points and active-contours phases. More
detailed performance analysisis given in Section 4.2.

3.2 Active-Points Phase

Traditional snake processing for detecting object boundaries demands
manually drawing an initial contour. Some others often set the image border as the
initial contour for automation. However, this can only be suitable for a single and
non-holed object. To cope with the multi-object problem, we propose to explode
the initial contour into pixels and distribute them at grid points everywhere in the
image, e.g., Figures 8(b), 9(b), and 10(b). Essentially, the grid spacing should be
less than the minimum distance that any two neighboring objects can be
distinguished. We assume that the grid spacing is d. On processing, these grid
pixels are “independently” moved by a directional driving function, which is based
on the AGVF field. Recognizing this dynamic behavior, they are then meaningfully
described as the “active points.” The role of the AGVF field here is acting as an
external force to direct active points towards multi-object boundaries. The internal
force is ignored in this phase since no sequential orders exist between these active
points.

To be more efficient, the movement of active points is alowed on the grid
space only. Hence, we consider only the direction of AGVF vectors and quantize
them into 8 directions, i.e, Vi (XY)=(P(XxY).4(%Y) , where

p(x,y)e{-d,0,d} and §(x,y)e{-d,0,d}. Since Vaae(X, y) is expected to
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point towards object boundaries, direction contradiction may occur for points
residing on the opposite sides of boundaries with strong strength and make active
points moving back and forth between them. To eliminate this situation and have
easier convergence, we remove force contradictions before processing. That is, for
grid points (x;, Y1) and (X, Yo that are adjacent and have
Vaove (%0 Y1) ==Vaewe (%, ¥2)  (as shown in Figure 2(a)), we set both Vagve(X1, Y1)
and Vacve(Xo, Yo) to (0, 0). Once active points move there, they will stop moving
further. Force contradiction may also occur near noisy edges, but not on dim edges.
The driving function of active pointsis defined to be

R,j+1(x1 y) = FI)] (X’ y) +\7AGVF (X’ y) ) (10)

where P, j(x, y) specifies the coordinates of the i-th unrepeatable active point at the
j-th iteration. The active points are initialized at grid pixels. When more than two
active points move to an identical position, they will be merged together. This
iterative process continues until no change in active-point positions, i.e., the stop
criterion of active-points phaseis:

P

i~ R, =0, forali. (12)
Notice that the AGVF vectors may point along the boundaries due to non-uniform
gradient magnitudes (i.e., gradient on gradients), as shown in Figures 2(b) and (c).
In this case, active points may cluster around some local minima, rather than the
whole boundaries. To overcome this problem, a movement with a large direction
change should be also prohibited and stopped if the following criterion is satisfied
during the iterative process:

|R,j+1_|:i),j4|§\/§|l:?,j _Pi,j—1|. (12)

Figure 3 gives an example to demonstrate the behavior of iterations vs.
convergence of active points. It is found that active points converge after 18
iterations to the result in Figure 8(c).

At the end of active-points phase, we can find their convergence to some
residuary points, mostly near the vicinities of obj ectNE)oundari&e. Assume that there
are N converged active points, P, P, ..., P . Then a modified distance
threshold clustering algorithm (Looney, 1997) is applied to self-organize these
converged active points into clusters Cy, ..., Cy, ..., Ck, where K is the number of
clusters, 1 <K <N, and kistheindex of clusters, i.e., k=1, 2..., K. The clustering
criterion is that an active point PY is assigned to cluster Cy if it satisfies the
following inequality:
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dist(P®,C,) = min{|P® — P| [P € C.} <y (13)

where dypg=7+2d is a threshold that depends on the grid spacing d and the
minimal distance between two distinguishable objects. Parameter # is chosen to be

between 1 and 5 in subsequent experiments. The clustering procedure is described
asfollows.

object boundary

@ (b) (©

Figure 2. (8) An example of force contradiction with quantized AGVF vector directions at
grid points. (b) A part of normalized gradient image of Figure 10(a). (c) Magnified
AGVF vectors for the rectangle in (b), where vectors may point along boundaries
due to non-uniform gradients.

I

S|Pyy— P

H HE N B HE H
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
i 1teration(s)

Figure 3. Curve of iterations vs. convergence of active points. Convergence occurs at
iteration 18 and results in Figure 8(c).
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Sep 1: Initialize cluster C, with PY and put P(Z), P™ into an empty queue UQ.
Setk=1.

Sep 2: Assign the active points in UQ to Cy by using Eq. (13). Remove them from
UQ and update Cy.

Sep 3: Iterate Sep 2 until no pointsin UQ satisfying Eq. (13).

Sep 4: Set k — k+ 1. Initialize C, with the first point in UQ and remove it from the
gueue. Iterate Steps 2 and 3 until no active pointsremainsin UQ.

Sep 5: Eliminate clusters whose sizes are smaller than a threshold ny,g. The final
result includes clusters Cy, C,, ..., Cx, where 1 <K <N.

Before proceeding to the second phase, “active-contours processing,” a
minimum enclosing convex polygon, i.e., the convex hull (Sonka, Hlavac, & Boyle,
1999), is computed for each cluster of active points. These convex polygons will be
close to object boundaries and have no crossing to each other (but possibly includes
others asiin a holed object case). They are then adopted as the initial contours (e.g.,
Figures 7(b), 8(d), 9(d), 10(d), 11(c), and 12(c)) for accurate boundary detection.

3.3 Active-Contour s Phase

Traditional snake processing uses global (Kass et al., 1988) or local (Williams
& Shah, 1992; Lam & Yan, 1994a, 1994b; Mirhosseini & Yan, 1997) optimization
of snake energy. The weighting parameters between the internal and external forces
have to be adjusted by users when dealing with different images. In the second
phase of our agorithm, an active contours model is used to extract object
boundaries accurately. We adopt a much more greedy strategy (Lie & Chuang,
2001) in our snake processing. No global or local optimization of snake energy is
needed. Instead, two force vectors conduct snake movements and the weighting
parameters are space-varying and automatically adjusted. Denote the snake points
sampled from the i-th initia active contour (i.e., the convex hull obtained above) to
be {S,;}. Assume that each j-th snake point moves from § j « t0 § j 1 in an
iterative manner. The force vectorsat S ; « are defined as follows:

1 ~ 1_
Vim(s,j,k)zipl,j—l,k_ pi,j,k+5 pi,j+l,k, (14)

Vext(s,j,k):VAGVF(S,j,k), (15)

where Pij« represents the vector pointing from the origin to § ; «. Basically, Vi
is the internal force vector that guides S j « to move towards the middle point of
segment S;1«S, ... This force will reduce internal energy and keep smoothness
of snakes more efficiently. On the other hand, Ve is the external force vector that
adopts the AGVF field directly (notice the unquantized version which is different
from that in the first phase).

305



C. H. Chuang, W. N. Lie/ Asian Journal of Health and Information Sciences, Vol. 1, No. 3, pp. 296-320, 2006

The proposed snake movement scheme is given to be
Siki=9« +[(@- F)\Znt(s,j,k) + FVext(S,j,k)] , (16)

' =EQ(Vf(S,,)),00<I <10, (17)

where V,, and V,, are normalized unit vectors of Vix and Ve«, and the
weighting factor T" is a function of |Vf |. We partition the histogram of |Vf | into L
bins so that each bin accumulates the same amount of occurrences. Then all the
bins are sequentially mapped to the code vaues {#51k=01,..,L-3
EQ(Vf (.)|) returns the code value of bin where the considered |Vf | is located.
Figure 4 shows this mapping. If we use the origina histogram of |Vf | for
computing T, the internal force will be greater than the external force for most
pixels. The goal of EQ(.) is to make a balance or equalization between the internal
and external forces. Without this histogram equalization, most [Vf | will cluster near
the first few bins (having small values) and make V,, under-weighted (i.e., small
I). In this way, T is actually space-varying and will be larger (approaching 1.0)
when S ; « is near object boundaries or smaller (approaching 0.0) when S ; i is far
from them. In our implementation, we set L = 256. Each snake point then moves to
approach object boundaries with the guidance of internal and external force vectors.
Distinctively, the motion element S j « in Eq. (16) includes points sampled from the
initial contours; while in Eqg. (10), the motion elements are grid points evenly
distributed in the image. The iterative snake process continues until a very small
change in point movement is achieved, i.e.,

D[S ia=Suu <9, (18)

where ¢ is a small threshold for iteration control. Since our initial snake contours
(i.e., the computed convex polygons) are expected to be close to the object
boundaries (the proximity depends on the grid spacing d), following convergence
of them in the second phase will be precise and fast.

Regarding the snake deformation, our detailed procedures for multi-object
segmentation include four kinds of operations: split, merge, interpolation, and
deletion. In cases that two or more objects are close enough or the grid spacing is
improper (e.g., too large), a convex polygon may cover more than one object (e.g.,
Figure 8(d)). A split operation is adopted to break up snakes by examining and
testing each snake point about whether it is counted twice along the snake contour
direction. On the other hand, if neighboring snake points move to an identical
position, they can be merged to be a single point. Moreover, provided that two
snake contours move to overlap, they will be merged to be a single contour by
deleting the overlapping part. Thirdly, if two adjacent snake points move in
diverged directions and become separated with a larger distance, the snake would
fail to segment an object with a smooth contour. To keep snakes continuous and
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smooth, interpolation is applied to insert additional contour points. The condition is
that if |S' i k_S, i1, kl > 2 is satisfied, a new point S,j’,k :%(S,j,k"_s,j—l,k) is
inserted and the point indices are re-ordered. Besides, in cases that two
non-adjacent snake points meet together or are disordered, a small loop may be
formed. An interception point should be also detected to split the snake into two
parts. After that, we delete short loops whose length is smaller than a threshold.
Furthermore, if a snake contains an incompl ete object (e.g., Figure 8(d)) or noise, it
will degenerate to an open curve or, extremely, asingle point.

The computational complexity of our snake algorithm is then O(n) and faster
than O(n?) of the traditional snake algorithm (Kass et al., 1988) and O(nh) of the
previously proposed greedy snake (Williams & Shah 1992), where n is the number
of points in the snake contour and h is the number of neighborhoods to be searched
in each iteration, i.e. h=8 in Williams & Shah (1992) and h=4 in Lam and Yan
(19944).

i A
Tt Vi
W w W g
n U e A r

ES . v
vr|

14 ne
EQUVED
€) (b)

Figure 4. Histograms of (&) |Vf | (linearly mapped to [0,1.0]) and (b) EQ(|Vf |) (L=256;
equally mapped to [0,1.0]).

4. EXPERIMENTAL RESULTS

4.1. Criteriafor Evaluation

Performance evaluation will be established on the average distance to the true
object boundaries for each snake pixel. First, the manually segmented object
boundary (e.g., the black circle in Figure 5(b)) is obtained as the reference. We
assume that there are m and n contour points in the reference and computed snakes,
respectively. Each contour point p; in the computed snake will search for a contour
point q(') with the minimal distance in the reference snake. The average of these
distances is considered as the mean error e,_,, for the computed snake with respect
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to the reference one. Similarly, every contour point g; in the reference snake will
search for a contour point p(” with the minimal distance in the computed snake. We
can calculate another error value e_, for the reference snake with respect to the
computed one. The average of e._,, and e_, and the maximal error that has ever
occurred are used to evaluate the result of segmentation (i.e., the computed snakes).
These equations are

) Zlp-a®] Zlai-e"
- +] )

ec—»r + —cC
error,,, = zef =3 . - (19)
and
error,., = max{max(|p, - q“)), max(|a; - p”’|)} , (20)
! j

4.2. Analysis of the AGVF Field

To make a performance comparison between the proposed AGVF and
traditional GVF (Xu & Prince, 1998) fields, we create a series of noisy images,
whose signal-to-noise ratios (SNRs) are from 14.6 dB down to 4.7 dB, for testing.
In this part of experiments, the active-points phase is not employed and the initial
snake contours are manually provided so as to clarify the performance difference
between these two GVF fields. Since the traditional GVF field is stable only with
the Courant-Friedrichs-Lewy step-size restriction (Xu & Prince, 1998), the
regularization parameter u will be restricted to be within 0~0.25.

Figure 5(a) demonstrates a “circle” image corrupted with Gaussian random
noise and Figure 5(b) shows its edge map obtained by gradient operation. In Figure
5(b), two concentric circles, the white one as theinitial snake contour and the black
one as the reference contour for comparison, are superimposed. In traditional snake
model (Eq. (4)), the weighting parameters are set with a = 0.05, # = 0, y = 0.6.
Figures 5(c) through 5(g) show the results of snake processing by using GVF fields
of different x values ( 1 = 0.01~0.25) and Figure 5(h) shows the snake result by
using our AGVF field. It can be found that most of the GVF fields, except the one
obtained with x4 = 0.25, produce inferior detection of object boundaries than our
proposed AGVF field.

Figures 6(a) and 6(b) plot the curves presenting the relation between x4 and
segmentation errors (as defined in Section 4.1) in images of different SNRs. Here, u
is extended to 0.3 to show the instability of traditional GVF field when ¢ > 0.25. In
Figure 6, the solid lines are curves of errors resulting from traditional GVF fields,
while the dotted ones represent errors (independent of x) resulting from the AGVF
field. The upper curves of both kinds represent the maximal errors evaluated by
using Eqg. (20) and the lower curves are average errors by using Eqg. (19). The

308



C. H. Chuang, W. N. Lie/ Asian Journal of Health and Information Sciences, Vol. 1, No. 3, pp. 296-320, 2006

proposed AGVF field leads to errors of (1.0, 0.5) pixels and (0.9, 0.4) pixels for
images of SNRs equal to 14.6 dB and 4.7 dB, respectively. It can be found that for
images of high SNRs, e.g., Figure 6(a), a broader range of u is allowable (where
errors are small) for traditional GVF field. When the images are noisy, e.g., Figure
6(b), the acceptable range of u is narrowed down and even located beyond x = 0.25.
Contrarily, even though the images are much noisier, our AGVF field can still
provide good attracting forces and result in small segmentation errors. Figures 6(c)
and 6(d) show curves that represent relationships between SNRs and errors at
different 1 (0.01 and 0.25). It can be found that a small x (e.g., 0.01) is hardly
suitable to all range of SNRs (down to 4.7 dB). When x isincreased up to 0.25, e.g.,
Figure 6(d), the resulting GVF field leads to a better segmentation but is still
unsatisfactory for noisy images with SNRs smaller than 5 dB.

Obviously, there is a trade-off between choosing a small or large x value. For
images of higher SNRs, more stress could be placed on the approximation of the
GVF fidd to Vf (i.e, low ). When the images are noisy, smoothness of the
computed GVF field should be stressed (i.e., high u) so that segmentation errors
can be reduced. On the other hand, our AGVF field provides this trade-off
automatically. It can achieve a uniform and stable performance (a maximal error of
about 1.0 pixel and an average error of about 0.5 pixel) in a broad range of SNRs
(4.7~14.6 dB).

(@ (b) © (d)

Cl ® @ (h)

Figure 5. (a) Origina image (SNR= 5.0 dB); (b) edge map of (a) superimposed with initial
(white circle) and reference (black circle) contours; (c)—(g) resultant snakes (the
white curves) by using traditional GVF fields with ¢ = 0.05, 0.1, 0.15, 0.2, 0.25,
respectively; (h) resultant snake by using our proposed AGVF field.
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Figure 6. (a)—(b) Relations of errors (maximum and average) vs. i at different SNRs (14.6
dB and 4.7 dB); (c)—(d) relations of errors (maximum and average) vs. SNR at
different 1 (0.01 and 0.25).

4.3 Experiments of Proposed Two-Phase Snake Processing Scheme

We first experiment with a series of artificial “Annulus” images (256x256
pixels) corrupted with noise. Intensities of the background and annulus areas are
added with different amounts of Gaussian noise so that the SNRs are 13.60, 10.64,
6.93, 4.46, and 2.51 dB, respectively. Accordingly the grid spacings for initial
active points are chosen to be 8, 8, 6, 4, and 4-pixel, respectively, which are fine
enough to distinguish two concentric circle boundaries (an image with a smaller
SNR should have a smaller grid spacing). After several processing iterations, the
converged active points are then grouped into two clusters (the inner and outer
rings), from which the minimum enclosing polygons can be figured out and
adopted as the initial snake contours. Figure 7(b) demonstrates the result of Figure
7(d) (SNR = 251 dB) after active-points processing with a deliberately larger
clustering distance threshold dyq. We perform, in the following active-contours
phase, the greedy (Williams & Shah, 1992) and traditional GVF snake (Xu &
Prince, 1998) for comparison. The weighting parameters («, S, y) are set with (0.5,
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0.5, 1.0) (for greedy) and (0.1, 0.3, 0.6) (for GVF), respectively. Figures 7(c)
through 7(e) give the final snake contours by the greedy, traditional GVF, and our
proposed algorithms, where the maximal errors are 15.61, 6.00, and 3.92 pixels and
the mean errors are 1.74, 1.41, and 1.22 pixels, respectively. The result convinces
us that even with a high noise (SNR = 2.51 dB) or a far initia snake, our method
can faithfully extract the boundaries of the annulus. The CPU time spent for the
three snake algorithms is about 0.01, 0.05, and 0.01 sec on a Pentium IIl 1G Hz
processor (the minimum computing time unit is 0.01 sec), respectively. Figures 7(f)
and 7(g) plot the curves of the maximal and mean errors vs. SNRs, respectively, for
the initial snake contour and the outputs of the three snake algorithms. Note that the
convergence of snakes, especially the greedy snake, is certainly affected by the
positions of initial contours.

For applications to rea images, we use biomedica (Figures 8-10) and
military (Figures 11 and 12) images for simulations. Figure 8 shows the experiment
for human blood cells. Considering possible proximity between cells, the grid
spacing is set to 2 pixels only (Figure 8(b)). Figure 8(c) shows the converged active
points around boundaries of cells. They are grouped into 4 major clusters and result
in 4 initial snakes (those enclosing complete cells) as shown in Figure 8(d). Figures
8(e) through 8(g) show the snake results by using the greedy, traditional GVF, and
proposed algorithms. Although one of the initial snakes contains three cells, they
can be separated successfully by our method, but not by the greedy and the
traditional GVF snakes. For noisy dots and incomplete cells around the image
border, our algorithm rejects them without any by-product effects. Figure 9 shows
the experiment for frog blood cells. The grid spacing is 6 pixels, leading to less
time spent (about 0.06 sec) in the active-points process (Figures 9(b)-9(d)). Some
artifacts occur in the results by using the greedy and the traditional GVF snakes, as
shown in Figures 9(e) and 9(f). Another experiment (Figure 10) shows the
robustness of the proposed algorithm in segmenting ventriclesin CT brain images.
Although the boundary between the ventricle and the brain tissue is fuzzy, the
target ventricle is enclosed successfully by active-points processing (Figures
10(b)-10(d)) and segmented approximately by active-contours processing (Figure
10(g)). Obvioudy, the greedy snake cannot approach the heavily concave part of
the ventricle (Figure 10(e)) and the traditional GVF snake is easily trapped into
local minima due to possibly improper weighting parameters (Figure 10(f)).
Figures 11 and 12 show experiments for the “Truck” and “Multiple cars” images.
Although many active points are caught by the brakes (Figures 11(b) and 12(b)),
they are scattered and can be removed by a threshold number of clustered active
points (i.e., nyg in Section 3.2), as shown in Figures 11(c) and 12(c). In these two
cases, though the objects are located in noisy surroundings, our algorithm still
outperforms others and gives satisfactory results. Table 1 compares the traditional
snake, greedy snake, GVF snake, and proposed two-phase AGVF snake in several
aspects to show the superiority of our algorithm.
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Figure 7. Performance comparison of “Annulus” images with varying SNRs. (a) Original
image corrupted by noise (SNR = 251 dB), (b) initial snake curves after
active-points processing with a deliberately larger clustering distance dig, (C)
greedy snake result (¢« = 0.5, f = 0.5, and y = 1.0), (d) traditiona GVF snake
result (e = 0.1, = 0.3, and y = 0.6), (€) proposed snake result, (f) maximal error
vs. SNR, (g) mean error vs. SNR.
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G ® ©
Figure 8. Experiments for the “human blood cells” image. (a) Origina image (170x156
pixels), (b) initia grid active points, (c) converged active points, (d) result of
active-points phase (initial snakes), (€) result of greedy snake (o = 0.5, f = 0.5,
and y = 1.0), () result of traditional GVF snake (¢« = 0.1, # = 0.3, and y = 0.6), (g)
result of proposed snake.

‘r e

Figure 9. Experiments for the ‘frog blood cells’ image. (a) Original image (240x190 pixels),
(b) initia grid active points, (c) converged active points, (d) result of
active-points phase (initial snakes), (€) result of greedy snake (« = 0.5, # = 0.5,
and y = 1.0), (f) result of traditional GVF snake (¢ = 0.1, # = 0.3, and y = 0.6), (g)
result of proposed snake.
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Figure 10. Experiments for the ‘Brain’ CT image. (a) Original image (130x140 pixels), (b)
initial grid active points, (c) converged active points, (d) result of active-points
phase (initial snakes), (€) result of greedy snake (a = 0.5, = 0.5, and y = 1.0), (f)
result of traditional GVF snake (¢ = 0.1, # = 0.3, and y = 0.6), (@) result of
proposed snake.
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Figure 11. Experiments for the ‘Truck’ image. (a) Origina image (256x256 pixels), (b)
converged active points, (c) result of active-points phase (initial snakes) (dy,g = 12
pixels, nyg = 15 points), (d) result of greedy snake (¢« = 0.5, # = 0.5, and y = 1.0),
(e) result of traditional GVF snake (¢ = 0.1, # = 0.3, and y = 0.6), (f) result of
proposed snake.
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© ®
Figure 12. Experiments for the ‘Multiple cars’ image. (a) Original image (256x256 pixels),
(b) converged active points, (c) result of active-points phase (initial snakes) (ding
= 9 pixels, Ny = 15 points), (d) result of greedy snake (¢ = 0.5, #=0.5, and y =
1.0), (e) result of traditional GVF snake (e = 0.1, # = 0.3, and y = 0.6), (f) result
of proposed snake.
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Table 1. A comparison of four kinds of snake algorithms for multi-object segmentation

Traditional GVF Proposed two-phase

Traditional snake Greedy snake snake AGVF snake
GVFfield No No Yes Y es (Adaptive)
Snake initialization Manual Manual Manual Automatic
Noise resistance Low Low High High
Weighting parameters in Manual and fixed Manual and fixed Manual and fixed Space-varying or
snake model Adaptive
Snake movement search Yes (Global) Yes (Local) Y es (Global) No
Object segmentation Single Single Single Multiple

5. CONCLUSIONSAND REMARKS

In this research, a new automatic two-phase snake algorithm for segmenting
multiple objects is proposed. The “automatic” comes from the distribution of grid
active-points over the entire image so as to determine the initial snake contours at
proper positions without manual interaction. Our algorithm is also capable of
segmenting multiple or annular objects (more versatile than traditional snake
algorithms). All processing is based on our proposed AGVF field which adopts
space-varying weighting functions to provide a stable and uniform performance
over a broad range of image SNRs. In the active-contours phase, a no-search
strategy is adopted so as to increase processing speed and efficiency. The snake
points move with the guidance of internal and externa forces which are computed
directly from the current snake contour status and AGVF vectors, respectively.
Hence, neither global nor local evaluation of the next movement is required.

One disadvantage of the GV F-based algorithm is that the GVF/AGVF fields
must be obtained prior to snake deformation and it actually spends most CPU time,
e.g., about 2 seconds on a Pentium |1l 1G Hz processor for a 256x256 image.
Fortunately, a multi-resolution GVF computing architecture has been recently
proposed (Ntalianis, Doulamis, Doulamis, & Kaoallias, 2001) to speed up the
computation significantly by nearly 40 times. Our two-phase AGVF snake
processing can make use of a 2-level AGVF field to further improve the speed and
efficiency.

The proposed agorithm will be versatile anywhere automatic detection or
segmentation of multiple objects is required, e.g., in an image retrieval system and
biomedical image processing and analysis.
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