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ABSTRACT 
We apply the Space-Time AutoRegressive Moving Average (STARMA) modeling methods in an 

investigation of the spreading dynamics of a West Nile virus (WNV) epidemic in crows in the Detroit 
Metro area in 2002. The data fit very closely those expected from a purely STAR (Space-Time 
AutoRegressive) process having low spatial and temporal orders. The model can be used to characterize 
the past and possibly even predict the future dynamics of spreading behavior and, most importantly, to 
provide information about the factors which govern the spreading behavior. Use of the STARMA model 
allows estimation of the rate of spread of WNV at different spatial scales and thus characterization of the 
spatial and temporal scales expected. Determination of spatial-temporal autoregressive parameters using 
STARMA holds considerable promise for characterizing emerging infectious diseases. 

Key words: space-time modeling; Space-time autoregressive moving average; infectious diseases; West 
Nile virus. 

1. INTRODUCTION 

West Nile virus (WNV) outbreaks in North America are characterized by 
steep epidemic curves in the American crow (Corvus branchyrhynchus) populations 
in time, with highly localized clusters of crow infections in space (Petersen & 
Roehrig 2001; Eidson et al., 2001; Theophilides, Ahern, Grady & Merlino, 2003). 
Mosquitoes of the genus Culex transmit WNV amongst these birds (Komar, 2000; 
Turell, O’Guinn & Oliver, 2000), and crows succumb rapidly to infection within 
4-8 days after exposure (McLean et al., 2001; Komar et al., 2003). In an outbreak in 
1999 in New York City, 89% of laboratory-confirmed, WNV-infected birds were 
American crows (Komar, 2000). The estimated death rate due to WNV infection 
was 68% within a marked crow population during an epizootic in Illinois in 2002 
(Yaremych et al., 2004b). The absolute accumulation of dead crows (even if 
infection is not laboratory-confirmed) is a measure of the spreading of virus 
infection in the crow population, and has been identified as a sensitive indicator 
variable for an on-going epizootic in crows and for heightened risk of infection in 
humans (Eidson et al., 2001; Theophilides et al.. 2003; Watson, Jones, Gibbs & 
Paul, 2004). 
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The dynamical behavior of the incidence of dead crows remains a poorly 
understood biological system with complex space-time interactions. Current 
understanding of the spatial dynamics of WNV infection based upon the incidence 
of dead crows is also poor. There has been no spatial-temporally explicit modeling 
(Eidson et al., 2001), and only a few statistical inferences are provided by cluster 
analyses, such as the Knox statistic (Theophilides et al., 2003). 

In this study, we investigate the spatial dynamics of a WNV epidemic in 
crows in Detroit Metro area in 2002, using the “Space-Time AutoRegressive 
Moving Average” (STARMA) model. The modeling procedure first identifies the 
key elements of a process, including the spatial distances over which there is direct 
spread and the associated time periods. Further it can be used to estimate the rates 
of spread at the various spatial and temporal scales. In doing so, the analyses 
characterizes the dynamics in a way that can be used to forecast future spreading, as 
well as provide information that could be critical in determining the factors that 
govern the dynamics. Not only can we recognize the areas of epidemiologic 
concerns in human health, in almost real time, but also provide details of the 
space-time transmission dynamics of WNV. 

 

 

 

 

 

 

 

 

Figure 1. Dead crow reported in the Detroit Metro area. The rectangle enclosed area is the 
area retained after truncation in space. 

2. METHOD 

2.1 Data Collection and Management 
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Dead crow data were collected systematically before and during an outbreak 
of West Nile viral meningoencephalitis in southeastern Michigan in the summer of 
2002 (CDC, 2002). A campaign was widely publicized to encourage the public to 
report findings of dead crows in the Detroit Metro area. Individuals reported 
sightings by accessing a website or by telephone call to a toll free number, from 
April to October, 2002. The number of dead crows found and the address were 
among the data recorded, and constituted the dead crow data (DCD) analyzed 
extensively in this article. WNV infection was confirmed in a subsample of these 
crows by immunohistochemical detection of viral protein of necropsied specimens 
(Fitzgerald et al., 2003). The estimated rate of infection in dead crows was 70% (K. 
Signs & Patterson, unpublished). In the DCD database, which covered all of Wayne, 
Macomb and Oakland counties, addresses were examined for validity or containing 
some error in number or street name. Those that were verified were retained and 
used for analysis. A total of 1807 dead crow sightings were successfully classified 
by latitude and longitude and by date of sighting, spanning 28 weeks. Most of the 
DCD counts fell within a rectangular shaped area of 31.6 × 25.8 miles (Fig. 1), and 
the data (leaving 1,516 dead crow counts) were truncated to include only this area, 
because this facilitated our implementation of STARMA analysis. For purposes of 
analysis, this area was divided into a grid of “cells.” In the one analysis presented 
in detail, there were 10 × 10 cells, each cell having dimensions 3.16 × 2.58 miles. 
Thus, in the analyses the space-time unit of data was the number of dead crows 
found in a cell during each of the 28 weeks. 

2.2 Statistical Analyses 

The dead crow data (DCD) were analyzed using the Space-Time 
Autoregression Moving Average (STARMA) model, which can be written: 
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where )]'(,),(),([)( 21 tZtZtZt NL=Z  is a N×1 vector of dead crow counts such that 
Zi(t) is the number of crows found in cell i during week t (Pfeifer & Deutsch, 1980). 
The parameters p and r are respectively the maximum autoregressive temporal and 
spatial orders, and q and s are respectively the maximum moving average temporal 
and spatial orders, which are determined by inspection of the behavior of the 
space-time correlations and partial space-time correlations (Pfeifer & Deutsch, 
1980). klφ  and klθ  are respectively the autoregressive and moving average 
parameters at temporal lag k and spatial lag l, and these are estimated in the 
analyses. The autoregressive parameters in particular would be expected to be 
functions of the relative rates of direct spatial spreading of the disease. )(lW is the 
N×N weight matrix for spatial order l. )(lW  has elements )(l

ijw  that are the 
weighting contributions of site j to site i, and which are nonzero if and only if site i 
and j are l-th order neighbors in space. The vector )]'(),...,(),([)( 21 tttt Nεεε=ε  is a 
random noise vector at time t. We used a wide variety of cell sizes (and hence 
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various total numbers of cells), but in the analysis presented in detail in the Results 
section, the cells had dimensions 3.16 × 2.58 miles, for a total of 100 cells in a 10 x 
10 spatial array or lattice. 

There are two correlations which need to be defined in advance for STARMA 
analysis. The first one is the Space-Time AutoCorrelation Function (STACF) and is 
defined as:  
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The other is the Space-Time Partial AutoCorrelation Function (STPACF), 
whose coefficients are conditional STACFs for given known klφ (Pfeifer & Deutsch, 
1980). 

STARMA analyses require specification of the spatial order relationships (as 
defined by Hooper & Hewings, 1981) among cells, and this can be done in an 
infinite variety of forms. We used several reasonable forms, but the one used in the 
detailed analysis presented in the Results is illustrated in Fig. 2. For example, the 
first spatial order (corresponding to )(lW ) contains cells that use the “rook’s” move 
(by analogy with the game Chess) nearest neighbors to a given site. The spatial lag 
structure specifies the spatial weight matrices )(lW  in Eq. (1), following the 
methodology of Pfeifer and Deutsch (1980). Note that this spatial lag structure 
makes the reasonable assumption that the spatial correlation structure of the data is 
isotropic.  

 
 

1st order 2nd order 3rd order 4th order  

Figure 2. Spatial order definition. 

The applied Pfeifer and Deutsch (1980) STARMA procedure, a space-time 
extension of the Box-Jenkins time series method (Box & Jenkins, 1970), involves 
three iterative steps of model identification, parameter estimation, and diagnostic 
checking. For the sake of brevity, we present in detail either the initial or final 
iteration in the Results. The following initial spatial order matrix, was used in the 
detailed analysis: 
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To make the space-time series stationary, the spatial and temporal trends (as 

shown in Fig. 3) were removed. Because it is evident that there are at least two 
spatial foci of incidence in the dataset, in the analyses presented in detail in the 
Results section, a fourth order polynomial trend surface combined with a temporal 
trend (as shown in Fig. 3) was removed from the dataset. The spatial trend is the 
least-square best-fit to the dataset of the following equation: 
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where N is the number of sites, vector )(tZ  is the original space-time series data, 
)(, tZ yx
is the element of )(tZ  at location (x,y). In combination, the spatial and 

temporal trends were removed according to the equation: 
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where h is a constant so that )(),( tTyxSh trendtrend ⋅⋅  best-fit to )(tZ , )(* tZ  is the 
de-trended )(tZ . After de-trending, the grand mean was also subtracted. However, 
in additional analyses we employed a wide variety of other polynomial surfaces for 
spatial de-trending, but found no substantial differences among the space-time 
autocorrelations and other aspects of STARMA. 

3. RESULTS 

The space-time autocorrelation function (STACF) and space-time partial 
autocorrelation function (STPACF) for the data treated by the main analysis 
specified in the Methods (with respect to cell sizes, spatial lag structure and spatial 
and temporal de-trending) are shown in Fig. 4. There are correlations as large as ca. 
0.35 at short distances and time lags, indicating a high degree of spatial-temporal 
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autocorrelation in the data.  
Together, the STACF and STPACF indicate that the dead crow data follow 

very closely a “pure” space-time autoregressive (STAR) process, and that there are 
no space-time moving-average (STMA) effects. The STACF shows the 
characteristic form of a STAR, because it tails-off smoothly with both temporal and 
spatial lags, and the STPACF shows the diagnostic (pure) STAR form of 
“cutting-off” (e.g., Pfeifer & Deutsch, 1980; Hooper & Hewings, 1981). “Cutting 
off” means that the STPACF goes to zero or near zero at some maximum spatial 
and temporal lags, and then remains so for higher lags. These lags of cutoff also 
identify the maximum temporal and spatial lags (the limits of the summations in Eq. 
(1)) of the process generating the DCD as being three weeks and spatial lag 4 (Eq. 
(2)), respectively, and the process can be written STAR(maxT=3, maxS=4). 

 
 

(a) (b) 

Figure 3. The spatial trend (a) and the temporal trend (b) were removed from the dead crow 
dataset before modeling. 

  

(a) (b) 

Figure 4. Space-time autocorrelation analysis for the de-trended dead crow dataset; (a) 
space-time autocorrelation function and (b) space-time partial autocorrelation 
function. 
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For a STAR(maxT=3, maxS=4) model, the maximum likelihood estimates of 
the autoregressive parameters (Table 1) can be calculated as best linear estimates of 
a general linear model. Thus the specific form of Eq. (1) is: 
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The estimate of autoregression parameter, klφ , for spatial lag zero and 
temporal lag one week is large (0.26), indicating that the number of dead crows 
found in a cell has a large positive influence on the number found there the next 
week. The value for spatial lag one, temporal lag one is also very large (0.36), 
indicating that the four nearest neighbor cells have a high degree of influence. This 
value could be considered as a function of the relative rate of spatial spread for the 
DCD and presumably the WNV epidemic in the crow population, across 
neighboring cells. Relative to the spatial and temporal de-trending, the rate of 
spread of the epidemic from one cell to another having a shared boundary would be 
one-fourth as large (0.09). The degree of influence for spatial lag two (constituted 
by four diagonal or second order neighbors) is considerably smaller (0.10 in total), 
but statistically significant. In addition, there is a large negative effect for spatial 
lag 1 time lag 2 weeks, which may be an indicator of depletion of local crow 
population, as is noted in the Discussion. All other autoregression coefficients are 
near zero or negative, although some are nominally statistically significant. In sum, 
the autoregression analysis indicates that nearly all of the autoregression is 
contained within spatial lag two and within two weeks. The rate of spread of 
incidence in the DCD data is rapid but primarily over very short distances, and the 
system is nearly Markovian, i.e. all or nearly all of the dynamics are determined 
over a one to two week period. 

Table 1. The estimates and significance levels of the model parameters [STAR(MaxT=3, 
MaxS=4)] 

Estimates of parameters 
 Spatial lag 

Temporal lag S=0 S=1 S=2 S=3 S=4 
T=1 0.26 0.36 0.10 -0.09 0.04 
T=2 0.04 -0.18 -0.07 -0.04 -0.11 
T=3 -0.02 -0.11 0.02 -0.02 -0.03 

Significance levels of parameters 
 Spatial lag 

Temporal lag S=0 S=1 S=2 S=3 S=4 
T=1 0.001 0.001 0.010 0.100 0.400 
T=2 0.040 0.001 0.040 0.300 0.010 
T=3 0.400 0.010 0.250 0.900 0.600 
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In further support of this conclusion, there are no significant space-time 
autocorrelations of the model residuals (Fig. 5). 

 

(a) (b) 

Figure 5. Space-time autocorrelation analysis of the residuals; (a) space-time autocorrelation 
function and (b) space-time partial autocorrelation function. 

To further test the robustness of the results, we configured many other initial 
conditions to enter into the iterative modeling procedure. For example, we used 
various numbers of cells (and hence correspondingly varied cell sizes), such as 
arrays of 16x16 and 20x20 for the same lag structure types as in Eq. (2). We also 
analyzed a “ring” lag structure, such that the lags of neighbors formed rings 
extending outwards in order (for example there were eight nearest neighbors 
formed into spatial lag one, i.e. a single step queen’s move in Chess; 16 cells 
formed lag 2; 24 cells for lag 3; etc.). We analyzed all combinations of the three 
cell configurations and two types of lag structures. It is not possible, simply 
because of geometry, to precisely compare values of the autoregressive coefficients 
and for sake of brevity we do not list them. However, in general terms there were 
no obvious inconsistencies, and large positive values were observed only at spatial 
lags that were comparable and only for temporal lags one and two. Moreover, all 
models had STACF’s and STPACF’s that indicated pure STAR processes. In 
addition, large negative values at time lag 2 were observed in spatial lags roughly 
consistent with lag 1 in the main analysis. 

One completely objective but limited comparison can be made, by examining 
the maximum spatial lag over which there are any statistically significant (in this 
case using the 0.01 level) autoregressive coefficients, using the lag structure of Eq. 
(2), but different cell arrays (sizes), and measuring the distance between the cell 
centers from the focal cell to the cells at the maximum lag. For arrays of cells 10×

10, 16×16, and 20×20, the maximum spatial orders were four, six and seven, 
respectively, and the corresponding maximum physical distances were 6.42, 6.47, 
and 6.36 miles. This shows that an effectively correlated area in the modeling 
results is consistently about 6.4 miles, regardless of the cell size used. However, it 
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should be kept in mind that the scale over which there were large positive 
autoregression was consistently much smaller. Furthermore, we analyzed a wide 
range of alternative configurations, subsampling only part of the Detroit area, 
various other cell configurations and SOMs. For each of these, we followed the 
iterative procedure described in this article. In all cases, the model that was 
converged to was consistent with the model reported. 

Finally, we used a large range of orders of polynomials for spatial de-trending 
prior to STARMA analyses. Again, there were no major changes in the spatial and 
temporal scales over which there were large positive autoregressive coefficients 
although, as the order of the polynomial became very high, the magnitudes of 
coefficients declined somewhat. Such a decline maybe anticipated. Essentially, 
high order de-trending removes autoregression, analogous to the removal of spatial 
autocorrelation when using high order polynomials in trend surface analyses 
(Bocquet-Appel & Sokal 1989). 

4. CONCLUSIONS 

The results showed that the incidence of reported dead crows per week during 
the 2002 epidemic in the Detroit Metro area closely fits a pure STAR process. A 
high degree of space-time autoregression was found, and no evidence of STMA 
influences. The latter result indicates that although there was both stochasticity and 
statistical noise in the observed values (the estimated variance is 1.451), these 
sources of variation were not directly or immediately shared spatially or temporally 
among cells, rather they behaved as “white noise” (Hooper & Hewings, 1981). 
Essentially all of the autoregression is contained within relatively low spatial and 
temporal orders, as was verified by analyses of the residuals. These results, together 
with the robustness of the interpretations, evidenced by lack of effects of changes in 
sizes of cells, spatial order definition and spatial de-trending, also verify that the 
STARMA modeling approach was appropriate. 

The autoregressive coefficients also show the pattern expected of most 
biological processes (e.g. Cliff, Haggett, Ord, Bassett & Davies, 1975; Upton & 
Fingleton, 1985; Epperson, 2000; Epperson, 2003). They are positive and large for 
close spatial proximities, i.e. small distances, and generally decrease in value as 
distance increases (Table 1). Exceptions involving fairly large negative parameters 
for short distances at the lags two and three are discussed below. The spatial scale 
over which there are large positive autoregressive coefficients is small, perhaps 
surprisingly so. As an example, consider the main analyses, where there was a 10 x 
10 array of cells and the spatial order matrix (SOM) of Eq. (2). Although the best 
fitted model is STAR(maxT=3, maxS=4), having maximum spatial lags 
corresponding to a distance of ca. 6.4 miles, in terms of distances between 
cell-centers, most of the positive autoregression is contained in a reduced model 
with maximum spatial lag 2 and maximum temporal lag three weeks. This indicates 
that the dynamics of the DCD operates over rather smaller distances, with 
maximum distances of direct effects of locations on one-another of ca. four miles or 
less, and presumably this reflects the spreading of the virus and changes in 
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probability of infection. However, the distances over which the virus load is 
primarily moving (spreading) may be still much smaller. There is a remarkable 
reduction of autoregressive effects for spatial lag 2 (0.10) compared to spatial lag 1 
(0.36) for the 10×10 array of cells and SOM of Eq. (2). The main difference 
between the two is the length of the boundaries between cells. This strongly 
suggests that length of boundary largely determines the rates of spreading of WNV 
among cells. If that is the case, it would indicate that WNV is mostly spread very 
short distances across cell borders, less than a mile or possibly even a few hundred 
meters. 

Crows can fly long distances, so the scale over which the DCD show large 
positive autoregressive effects may seem surprisingly small. However, the 
mosquito vector is active primarily during hours when crows are roosting, and 
crows are territorial and show high fidelity to roosting sites (Yaremych et al., 
2004a). Thus, crows may be largely being infected and transmitting the virus at 
their roosting sites, and thus apparently not spatially spreading the disease, 
although this would amplify the viral load locally. In addition, superimposed on 
this process are the distances of flights between where dead crows are found and 
their roosting sites (Yaremych et al., 2004b). Although such movements do not 
spread the disease, they could influence the short term autoregression of DCD. 
While crows are a very good indicator of viral loads, they may not be largely 
responsible for spatially spreading the disease. Other animals or even the mosquito 
vector itself may be more responsible for the local spatial spread per se. 

Two points should be reinforced. First, since crows are one of the 
most-infected animals, they could be very important in amplifying the disease 
locally (say within a cell). Second, our results do not mean that the crows do not on 
occasion spread WNV long distances, and indeed perhaps even start a new local 
epidemic. It is unlikely that such low frequency events would be detected in our 
analyses. Still, the results do suggest that there is a good chance that local 
epidemics could be contained or at least reduced, for example through a 
concentrated eradication effort, spraying of mosquito ponds, etc. 

The results also showed that the temporal order of the process is nearly 
Markovian, since large and significant parameters are observed only for time lags 
of one and two weeks. It has been argued that the Markovian property should be 
common in biological processes (Epperson, 2000). In addition, the prominence of 
one- and two-week lagged effects is consistent with the short interval between 
infection and death (Komar et al., 2003), and with empirical evidences of intense 
localized epizootics (Eidson et al., 2001; Theophilides et al., 2003).  

One specific feature of the autoregressive structure that deserves special 
examination is the rather large negative autoregressive parameters at time lag 2 for 
some spatial lags. This was observed in all models, and appears to be a real effect. 
It may be explained by depletion of the crow population. Depletion of the crow 
population was extreme: during the course of the WNV season in 2002, up to 70% 
of crows in Detroit died from WNV (K. Signs & J. Patterson, unpublished). Hence, 
for example, if a cell had an unusually high rate of crow death for a given time 
period (week) then, especially during the height of the WNV season, a significant 
portion of the crow population in that cell would have died, leaving fewer to be 
infected and die one to two weeks later. Thus, our results suggest that there are 
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actually two DCD autoregressive processes. The first is dependent on the local and 
nearby WNV loads, and the second is a weaker echo effect caused by depletion. 
The mixture of the two may make temporal lag one DCD autoregressive parameters 
all positive, but not all of the temporal lag two parameters.  

Finally, it is important to discuss the de-trending over time and space. The 
fact that we de-trended temporally over the season means that the autoregressive 
parameters are not rates of spread, but rather relative rates given the overall 
increase or decrease in WNV. The former might be recovered by adding multipliers 
to the autoregressive (the variance of the errors term )(tε  might also change over 
time) structures, depending on the exact week. More interesting is the rather 
striking spatial non-stationarity, in particular two to three “hotspots.” Since we 
have removed these by polynomial regression, our analyses reveals nothing about 
why they occurred. 

ACKNOWLEDGEMENTS 

We gratefully acknowledge the data collation efforts of Erik Foster and Amy 
Williams. Dr. Jonathan S. Patterson (Diagnostic Center for Population and Animal 
Health, Michigan State University) performed immunohistochemistry analyses to 
confirm West Nile virus infection on a subsample of dead crows. This study was 
supported by the Michigan Agricultural Experiment Station and the Center for 
Emerging Infectious Diseases, Michigan State University; and a cooperative 
agreement with the Centers for Disease Control and Prevention (2002), US Public 
Health Services. 

REFERENCES 

Bocquet-Appel, J. P. & Sokal, R. R. (1989). Spatial autocorrelation analysis of 
trend residuals in biological data. Systematic Zoology, 38, 333-341. 

Box, G. E. P. & Jenkins, G. M. (1970). Time Series Analysis: Forecasting and 
Control. Holden-Day, San Francisco, USA. 

Centers for Disease Control and Prevention (2002). Provisional surveillance 
summary of the West Nile virus epidemic – United States, January-November 
2002. Morbidity and Mortality Weekly Report (MMWR), 51, 1129-1133. 

Cliff, A. D., Haggett, P., Ord, J. K., Bassett, K. A., & Davies, R. B. (1975). 
Elements of Spatial Structure: A Quantitative Approach. Cambridge 
University Press, New York, USA. 

Eidson, M., Komar, N., Sohage, F., Melson, R., Talbot, T., & Mostashari, F. (2001). 
Crow deaths as a sentinel surveillance system for West Nile virus in the 
northeastern United States. Emerging Infectious Diseases, 7, 615-620. 

Epperson, B. K. (2000). Spatial and space-time correlations in ecological models. 
Ecological Modelling, 132, 63-76. 



C. Y. Lee et al./ Asian Journal of Arts and Sciences, Vol. 1, No. 1, pp. 29-41, 2010 

40 

Epperson, B. K. (2003). Geographical Genetics. Princeton University Press. 
Fitzgerald, S., Patterson, J., Kiupel, M., Simmons, H., Grimes, S., Sarver, C. et al. 

(2003). Clinical and pathologic features of West Nile virus infection in native 
North American owls (Family Strigidae). Avian Diseases, 47(3), 602-610. 

Hooper, P. M. & Hewings, G. J. D. (1981). Some properties of space-time 
processes. Geographical Anals, 13, 203-223. 

Komar, N., Langevin, S. Hinten, S., Nemeth, N., E., E., Hettler, D., Davis, B., 
Bowen, R., & Bunning, M. (2003). Experimental infection of North 
American birds with the New York 1999 strain of West Nile viral. Emerging 
Infectious Diseases, 9, 311-322. 

Komar, N. (2000). West Nile viral encephalitis. Rev Sci Tech, 19, 166-176. 
McLean, R. G., Ubico, S. R., Docherty, D. E., Hansen, W. R., Sielo, L., & 

McNamera, T. S. (2001). West Nile virus transmission and ecology in birds. 
Annals of the New York Academy of Sciences, 951, 54-57. 

Petersen, L. & Roehrig, J. (2001). West Nile virus: a reemerging global pathogen. 
Emerging Infectious Diseases, 7(4), 611-614. 

Pfeifer, P. E. & Deutsch, S. J. (1980). A three-stage iterative procedure for 
space-time modeling. Technometrics, 22(1), 35-47. 

Theophilides, C. N., Ahern, S. C., Grady, S., & Merlino, M. (2003). Identifying 
West Nile virus risk areas: The dynamic continuous-area space-time system. 
American Journal of Epidemiology, 157, 843-854. 

Turell, M. J., O’Guinn, M. and Oliver, J. (2000). Potential for New York 
mosquitoes to transmit West Nile virus. Am J Trop Med Hyg, 62, 413-414. 

Upton, G. J. G. & Fingleton, B. (1985). Spatial Data Analysis by Example: Point 
Pattern and Quantitative Data. John Wiley & Sons. 

Watson, J., Jones, R., Gibbs, K., & Paul, W. (2004). Dead crow reports and 
location of human West Nile virus cases, Chicago, 2002. Emerging Infectious 
Diseases, 10(5), 938-940. 

Yaremych, S. A., Novak, R. J., Raim, A., Mankin, P., & Warner, R. E. (2004a). 
Home range and habitat use by American Crows in relation to West Nile virus 
transmission. The Wilson Bulletin, 116(3), 232–239. 

Yaremych, S. A., Warner, R. E., Mankin, P., Brown, J., & Novak, R. J. (2004b). 
West Nile virus and high death rate in American Crows. Emerging Infectious 
Diseases, 10(4), 709-711. 

 
 
 
 
 
 
 
 
 
 
 



C. Y. Lee et al./ Asian Journal of Arts and Sciences, Vol. 1, No. 1, pp. 29-41, 2010 

41 

Cheng-Yu Lee received his BS degree in 
Electronic Engineering from National Taiwan University 
of Science and Technology in 1990, and his MS degree in 
Electrical and Computer Engineering from Michigan State 
University in 2001. In 2005 he then received a dual PhD 
degree in the programs of Ecology, Evolutionary Biology 
and Behaviors and in the Department of Forestry from 
Michigan State University. During this study, he was one 
of the major research fellows for the Center for Emerging 
Infectious Diseases (MSU) for two years. After this study, 
he worked as a postdoctoral research fellow for the 

National Health Research Institutes (Taiwan) on space-time analysis and modeling 
of the epidemics of Enterovirus and Influenza-like Illness in Taiwan. He is 
currently an assistant professor in the Department of Bioinformatics, Asia 
University. His research interests include statistical analysis and modeling for 
spatial-temporal data, epidemiological space-time modeling, and biomedical 
image/signal processing. 
 
 
 

Bryan K. Epperson received his BS degree in Biology of Natural Resources 
from University of California, Berkeley, USA in 1979, and PhD degree in Genetics 
from the University of California, Davis, USA in 1983. His research areas of 
interest include: population genetics, evolutionary biology, and ecological genetic 
basis of traits in the structure and function of natural populations; spatial and 
space-time models and statistics. Dr. Epperson is currently a professor in the 
Department of Forestry at Michigan State University, USA. 
 
 
 

Edward D. Walker received his BS and MS degrees from Ohio University, 
USA in 1978 and 1979, respectively, and PhD degree from the University of 
Massachusetts, USA in 1984. His major research interests include: Microbial 
mediation of mosquito production from aquatic habitats and oviposition site 
selection, emerging infectious diseases: landscape ecology and landscape risk 
analysis using vector-borne diseases as model systems, vector-borne disease 
surveillance: laboratory and field methodology, mosquito biology and control of 
mosquito vectors. Dr. Walker is currently a professor in the Department of 
Microbiology and Molecular Genetics at Michigan State University, USA. 
 
 
 

Kimberly Signs is a doctor of veterinary medicine and currently working as a 
Zoonotic Disease Epidemiologist at Michigan department of community Health, 
Michigan, USA.


